Investigations
What is an Investigation?Filters
Aim. To provide critical quantitative parameter information and to model redox balance by determining the cellular concentration of all enzymes involved in the trypanothione-dependent hydroperoxide detoxification system of trypanosomes and by performing the kinetic characterization of the involved enzymes under pseudo-physiological conditions.
Submitter: Alejandro Leroux
Studies: Determination of the redox state and the total concentration of the tryp..., Kinetic characterization of trypanothione-dependent enzymes, Kinetic modelling of Trypanothione Synthetase to elucidate the enzyme me...
Assays: Creating kinetic model of Trypanothione Synthetase, Trypanothione synthetase ATP consumption steady state data, Trypanothione synthetase Gsp and T(SH)2 production measured by HPLC
Cultures grown under standard SUMO conditions were analyzed with respect to heterogeneity in gene expression. To this end GFP reporter strains were constructed and GFP expression at single cell level was monitored by flow cytometry.
The electron transport chain of E. coli is branched. Different NAD Dehydrogenases and terminal oxidases are known to be expressed at different oxygen availabilities. By deleting multiple genes mutant strains were constructed that posses a linear electron transport chain. These mutants were investigated in continous bioreactor experiments with limiting glucose and varying oxygen supply.
Submitter: Katja Bettenbrock
Studies: Analysis of Escherichia coli strains with linear respiratory chain
Assays: Determination of by-product formation and glucose uptake of mutants with..., Deternination of ArcA phosphroylation level in mutants with linear ETC a..., Gene expression analysis of mutants with linear electron transport chain...
An investigation in the central carbon metabolism of S. solfataricus with a focus on the unique temperature adaptations and regulation; using a combined modelling and experimental approach.
Submitter: Jacky Snoep
Studies: Carbon Loss at High Temperature, Model Gluconeogenesis
Assays: Experimental Validation Gluconeogenesis in S. solfataricus, FBPAase, FBPAase Modelling, GAPDH, GAPDH Modelling, Model Validation Gluconeogenesis in S. solfataricus, Modelling Metabolite Degradation at High Temperature, PGK, PGK Modelling, Reconstituted Gluconeogenesis System, TPI, TPI Modelling, Temperature Degradation of Gluconeogenic Intermediates
Investigating oscillations at the level of yeast populations and individual cells
Submitter: Katy Wolstencroft
Studies: Detailed kinetics of yeast glycolytic oscillation, Sustained glycolytic oscillations in individual isolated yeast cells
Assays: Detailed kinetic model of yeast glycolytic oscillation, Metabolite concentrations in yeast glycolytic oscillations, Modelling sustained glycolytic oscillations in individual isolated yeast...
A further investigation of the variation of FNR number in E.coli Cyo/Cyd mutants is carrying out at different oxygen supply levels. The agent-based FNR and ArcBA model is going to be used for this prediction. The number of Cyo or Cyd and other unrelated agents would be set as ‘0’ at the initial XML file with which the model starts. According to the restrictions of supercomputer ‘Iceberg’ (serviced provided by the University of Sheffield), certain parameters, such as memory per node, would be ...
In Escherichia coli several systems are known to transport glucose into the cytoplasm. A series of mutant strains were constructed, which lack one or more of these uptake systems. These were analyzed in aerobic and anaerobic batch cultures, as well as glucose limited continuous cultivations.
Submitter: Sonja Steinsiek
Studies: Characterization of mutant strains with defects in sugar transport systems
Assays: Aerobic and anaerobic characterization of MG1655 and mutant strains with..., Aerobic and anaerobic characterization of MG1655 and mutant strains with..., Characterization of MG1655 and mutant strains under conditions of glucos..., TFinfer2
Transcriptional and physiological responses of anaerobic steady state cultures to pulses of electron acceptors, specifically nitrate, trimethylamine-N-oxide (TMAO)
The aim of the study is to assess the global function of RNase Y in RNA processing and degradation in Bacillus subtilis. To this end we constructed a strain allowing controlled depletion of RNase Y and used microarrays to analyze the transcriptome in response to the expression level of RNase Y.
The aims of this investigation is to quantify metabolites associated with pathways involved in stress responses for parameterising models of oxidative stress metabolism; the measurement of metabolic fluxes of metabolites of interest with intracellular concentrations
Submitter: Dong-Hyun Kim
Studies: Metabolic flux measurement, Targeted metabolite analysis, Untargeted metabolite analysis
Assays: Generation of uniformly 13C-labelled E. coli extract, Intracellular metabolite concentrations in T. brucei exposed to oxidativ..., Intracellular metabolite concentrations in T. brucei under pH stress, LC-MS based absolute quantification of extracellular metabolites, LC-MS based absolute quantification of intracellular metabolites, Metabolite profiling on T. brucei exposed to oxidative stress
Automated model building using Taverna workflows from KEGG-Database
Multiply perturbations of trypanosome redox metabolism, closing the feedback loop between experimentation and in silioc modelling, allowing model refinement or, where there are unexpected outcomes, re-evaluation. Providing a dynamic picture of cell physiology by examining programmed metabolic changes during the developmental life-cycle of these parasites as they adapt to very different external milieus, including distinct levels of oxidative stress and unique adaptations of their redox balance ...
methods developed during COSMIC
Despite a long history in using C. acetobutylicum, little is known about the regulation of the metabolic shift, the characteristics of key-regulatory elements as well as bottlenecks of the metabolism. Goal of the collaborative project ´COSMIC-2` (Clostridium acetobutylicum Systems Microbiology 2; part of ‘SysMO’) is to increase the knowledge of this clostridial metabolism and its regulatory patterns. The focus will be on the key regulatory and metabolic events that occur during the shift from the ...
Submitter: John Raedts
Studies: Developement metabolomics protocol
A key insight, emerging from discussions and data between the projects PIs, was the importance of switching rates in bistable systems. While the existence of multiple steady states in bistable systems can be described by universal models (that do not differ between different systems), switching rates from one stable state to another depend on the molecular details of the system under consideration.
Aim. Constructing a predictive, dynamic model of the redox metabolism of trypanosomes. Aided by this model we will quantify the impact of gene-expression and metabolic regulation on redox metabolism. The model will be constructed in an iterative cycle of experimentation – modelling – analysis – experimentation, such that it can be extended and refined based on new experimental insights.
Submitter: Jurgen Haanstra
Studies: Iterative cycles of model improvement and extension., Modelling of gene expression and Regulation Analysis., Modelling of redox metabolism.
Assays: No Assays
The objective of this project is an integrated understanding the metabolic, proteomic and genetic network that controls the transition from growth to glucose starvation. This transition is a fundamental ecophysiological response that serves as a scientific model for environmental signal integration and is pivotal for industrial fermentations of Bacillus that occur predominantly under nutrient starvation.
Keywords: Glucose starvation, Transcriptomics, Proteomics, Metabolomics,Bacillus subtilis,
Submitter: Praveen kumar Sappa
Studies: B. subtilis Transcription Factor Competition, Batchfermentation exp-starv01_090204, Biphase Batch Fermentation(2009/02/04), Controlled sigmaB induction in shake flask, Transition to starvation in shake flask
Assays: 2D-gelbased analysis of intracellular proteins, Absolute quantification of proteins by the AQUA-technology, B. subtilis Transcription Factor Competition - theoretical interpretation, B. subtilis Transcription Factor Competition - theoretical interpretation, Fermentation-BM5_SysMo, Gene expression(Transcriptome), IPTG induction of sigmaB in BSA115, IPTG induction of sigmaB in BSA115, Relative quantification of proteins by metabolic labeling, Stressosome activation dynamics, metabolome-LCMS
Clostridia are very ancient bacteria which evolved before the earth had an oxygen atmosphere. To them the air we breathe is a poison. To survive they produce a spore resting stage, resistant to physical and chemical agents.
Some species cause devastating diseases, such as the superbug Clostridium difficile. On the other hand, most are totally harmless, and make a wide range of chemicals useful to man. The best example is Clostridium acetobutylicum which makes butanol. Butanol is an alcohol, which ...
Submitter: Holger Janssen
Studies: Investigation of different pH values for metabolic shift
Assays: test
Investigation of how the ENA1 gene is transcriptionally regulated.
Changing the oxygen availability leads to an adaptation of Escherichia coli at different biological levels. After pertubation of oxygen in chemostat experiments the microorganism(s) will come back to another steady state. This investigation deals with these stationary responses of Escherichia coli within the aerobiosis scale. The change for different biological variables, in different areas of the organism like the electron transport chain, the TCA cycle or globally is investigated by wildtype ...
Submitter: Michael Ederer
Studies: Basic regulatory principles of Escherichia coli’s electron transport cha..., Determination of the impact of specific enzyme reactions and regulatory ..., Quantitative analysis of catabolic carbon and electron fluxes in E. coli..., The Escherichia coli steady state response to oxygen: from molecular int...
Assays: Analysis of by-product formation rates in MG1655, Analysis of gene expression rates at different aerobiosis levels via RT-PCR, ArcA phosphorylation at different aerobiosis levels (steady states), Characterization of E. coli MG1655 and ∆sdhC and ∆frdA isogenic mutant s..., Determination of intracellular metabolite concentrations, Determination of intracellular redox state by means of NAD/NADH ratio, Determination of intracellular redox state by means of ubiquinones (oxd/..., FNR activity at different aerobiosis levels (steady state), Kinetic modelling of Escherichia coli's electron transport chain, Kinetic modelling of Escherichia coli's electron transport chain coupled..., Literature Data from Alexeeva et al., J. Bacteriol., 2000, 2002, 2003, Measurement of cytochrome numbers, Physiological measurements from Sheffield chemostat, Steady State Oxygen Response of E. coli WT and two Electron Transport Ch..., Transcriptional profiling of steady states at different aerobiosis levels
Changing the oxygen availability leads to an adaptation of Escherichia coli at different biological levels. After pertubation of oxygen in chemostat experiments there are very quick responses. This investigation deals with this dynamical behaviour (transitions) of Escherichia coli within the aerobiosis scale. The change for different biological variables, in different areas of the organism like the electron transport chain, the TCA cycle or globally is investigated by wildtype and mutants experiments ...
The Sulfolobus systems biology (‘‘SulfoSYS’’)-project represented the first (hyper-)thermophilic Systems Biology project, funded within the European trans-national research initiative ‘‘Systems Biology of Microorganisms’’. Within the SulfoSYS-project, focus lies on studying the effect of temperature variation on the central carbohydrate metabolism (CCM) of S. solfataricus that is characterized by the branched Entner–Doudoroff (ED)-like pathway for sugar (glucose, galactose) degradation and the ...
Submitter: Pawel Sierocinski
Studies: Pilot experiment - S. solfataricus grown at 70 and 80 C.
Assays: Comparison of proteome of S. solfataricus at 70 and 80C, Comparison of transcriptome of S. solfataricus at 70 and 80C, Enzyme activity tests for S. solfataricus, Fermentation of S. solfataricus at 70 and 80C in a batch fermenter, Intracellular metabolomics of S. solfataricus at 70 and 80C
Experimental approaches to evaluate cellular response to Potassium limitation. For this purpose, a series of isogenic strains derived from BY4741 and lacking one (TRK1 or TRK2) or both TRK genes encoding specific potassium uptake systems was constructed using the homologous recombination and Cre-lox system.
Submitter: Simon Borger
Studies: Analysis of proton and potassium fluxes, Experimental approaches to determine the dependence of volume, pH and me..., Ion Flux Changes, Key Cell-Physiological Parameters, Long Term Metabolomic Profile, Proteomic Studies, Pysiological Model, Transcriptional Profile
Assays: 2D-Gel Electrophoresis, Ammonium fluxes, External Potassium Concentration, External pH changes, HPLC-MS, How does internal potassium change (/decrease) during several hours of p..., How starvation affect protein content in yeast cells, LacZ Reporters, Membrane Potential, NMR, Potassium fluxes, Protein Concentration, Protein Identification - MS, Proton fluxes, RT-PCR, Stable membrane potential, Stable pH, Stable potassium concentration, Stable volume, Time Course Micro Array Experiment, Time courses of the internal pH changes, Volume determination during starvation at different times.
Challenge: Comparative analyses, as demonstrated by comparative genomics and bioinformatics, are extremely powerful for (i) transfer of information from (experimentally) well-studied organisms to the other organisms, and (ii) when coupled to functional and phenotypic information, insight in the relative importance of components to the observed differences and simalities. The central principle of this proposal is that important aspects of the functional differences between organisms derive not ...
Submitter: Martijn Bekker
Studies: Comparative modeling and phosphate dependence flux distributions and glu..., Kinetics of L-lactate dehydrogenase from S. pyogenes, E. faecalis and L...., Reconstructing the metabolic pathways of S. pyogenes and E. faecalis fro..., Study of the physiological characterization of three lactic acid bacteri...
Assays: BIOLOG substrate utilization assay, Genome-Scale Model Enterococcus faecalis V583, Genome-scale model of Streptococcus pyogenes, Global sensitivity analysis, Glucose pulsed L. lactis, Glucose pulsed S. pyogenes, Kinetics of L-lactate dehydrogenase from L. lactis, Kinetics of L-lactate dehydrogenase from S. pyogenes, E. faecalis, and L..., Maximal specific growth rates of the three lactic acid bacteria and thei..., Model of L. lactis glycolysis, Physiological characterization of Lactic acid bacteria grown in C-limite..., Regulation of the activity of lactate dehydrogenases from four lactic ac...
Investigation of dynamics of the central metabolism (glycolysis, PPP, anaplerotic reactions, purines) of yeast Saccharomyces cerevisiae in anaerobic conditions
Submitter: Maksim Zakhartsev
Studies: Metabolic perturbation of the steady state culture by glucose pulse
Assays: Biomass weight during glucose pulse, Cellular size and granularity during glucose pulse, Dynamics of extracellular metabolites during glucose pulse, Dynamics of intracellular metabolites during glucose pulse, Dynamics of macromolecules during glucose pulse, MOSES: dynamic model of glucose pulse
Steady state metabolic fluxes and metabolite concentrations of yeast Saccharomyces cerevisiae in anaerobic chemostat at D=0.1 h-1
Submitter: Maksim Zakhartsev
Studies: Steady state concentrations of metabolites in yeast Saccharomyces cerevi..., Steady state fluxes in yeast Saccharomyces cerevisiae in anaerobic chemo...
Assays: Steady state concentrations of extracellular metabolites in yeast Saccha..., Steady state concentrations of intracellular metabolites in yeast Saccha..., Steady state extracellular fluxes in anaerobic yeast Saccharomyces cerev...
Bacillus subtilis was subjected to various stress conditions like high temperature(57°C), low temperature(16°C), high osmalarity(1.2M NaCl). The above mentioned stress conditions are again split into two different types as 'continuous stress condition' and 'sudden shock'. All the conditions were then done in biological triplicates. Transcriptome for these samples was then analysed with Nimblegen Tiling array.
Submitter: Praveen kumar Sappa
Studies: Transcriptome analysis of glucose starvation in B. subtilis, Transcriptome of continuously stressed B. subtilis, Transcriptome of shocked B. subtilis cells
Assays: Tiling Array analysis of glucose strarved B. subtilis cells, Tiling Array analysis of shocked B. subtilis cells, Tiling array analysis of continuous growth stress conditions in SMM
Cellular parameters of strains lacking both TRK1 and TRK2 genes.
Submitter: Falko Krause
Studies: Bioinformatic studies, Current-voltage relation, Genetic analysis, Key Cell-Physiological Parameters of TRK1,2 Transport Systems Investiga..., Kinetic properties of Trk, Promotor Anaysis, Proteomic analysis, Transcriptional Profile, Transcriptomic Profiling of 14-3-3 Mutants
Assays: 2D Gel Analysis, Current voltage relation for different external KCl, Current-voltage relation for different internal potassium, Describing of membrane potential changes in response to proton fluxes., Determination of kinetic properties based on MIFE flux data and measurem..., In silico Promotor Anaysis, Insilico Promotor Anaysis, Interaction Database Analysis, Internal pH, Membrane Potential, Modelling of the Trk-current, Potassium Concentration, Protein Concentration, Volume