Mathematical model for TPI kinetics, saturation with GAP and DHAP, and inhibition by 3PG and PEP
SEEK ID: https://fairdomhub.org/assays/229
Modelling analysis
Projects: SulfoSys
Investigation: Central Carbon Metabolism of Sulfolobus solfataricus
Study: Model Gluconeogenesis
Assay position:
Biological problem addressed: Enzymology
Organisms: Sulfolobus solfataricus
Export PNG
Views: 3875
Created: 1st Aug 2013 at 14:03
Last updated: 8th Nov 2017 at 14:21
Related items
- People (1)
- Programmes (1)
- Projects (1)
- Investigations (1)
- Studies (1)
- Data files (2)
- Models (1)
- Publications (1)
Projects: PSYSMO, MOSES, SysMO DB, SysMO-LAB, SulfoSys, SulfoSys - Biotec, Whole body modelling of glucose metabolism in malaria patients, FAIRDOM, Molecular Systems Biology, COMBINE Multicellular Modelling, HOTSOLUTE, Steroid biosynthesis, Yeast glycolytic oscillations, Computational pathway design for biotechnological applications, SCyCode The Autotrophy-Heterotrophy Switch in Cyanobacteria: Coherent Decision-Making at Multiple Regulatory Layers, Project Coordination, WP 3: Drug release kinetics study, Glucose metabolism in cancer cell lines
Institutions: Manchester Centre for Integrative Systems Biology, University of Manchester, University of Stellenbosch, University of Manchester - Department of Computer Science, Stellenbosch University
SysMO is a European transnational funding and research initiative on "Systems Biology of Microorganisms".
The goal pursued by SysMO was to record and describe the dynamic molecular processes going on in unicellular microorganisms in a comprehensive way and to present these processes in the form of computerized mathematical models.
Systems biology will raise biomedical and biotechnological research to a new quality level and contribute markedly to progress in understanding. Pooling European research ...
Projects: BaCell-SysMO, COSMIC, SUMO, KOSMOBAC, SysMO-LAB, PSYSMO, SCaRAB, MOSES, TRANSLUCENT, STREAM, SulfoSys, SysMO DB, SysMO Funders, SilicoTryp, Noisy-Strep
Web page: http://sysmo.net/
Silicon cell model for the central carbohydrate metabolism of the archaeon Sulfolobus solfataricus under temperature variation
Programme: SysMO
Public web page: http://sulfosys.com/
Organisms: Sulfolobus solfataricus
An investigation in the central carbon metabolism of S. solfataricus with a focus on the unique temperature adaptations and regulation; using a combined modelling and experimental approach.
Submitter: Jacky Snoep
Studies: Carbon Loss at High Temperature, Model Gluconeogenesis
Assays: Experimental Validation Gluconeogenesis in S. solfataricus, FBPAase, FBPAase Modelling, GAPDH, GAPDH Modelling, Model Validation Gluconeogenesis in S. solfataricus, Modelling Metabolite Degradation at High Temperature, PGK, PGK Modelling, Reconstituted Gluconeogenesis System, TPI, TPI Modelling, Temperature Degradation of Gluconeogenic Intermediates
Snapshots: No snapshots
Mathematical model of a subset of reactions comprising the three most temperature sensitive intermediates of the gluconeogenic pathway in S. solfataricus
Submitter: Jacky Snoep
Investigation: Central Carbon Metabolism of Sulfolobus solfata...
Assays: FBPAase, FBPAase Modelling, GAPDH, GAPDH Modelling, Modelling Metabolite Degradation at High Temperature, PGK, PGK Modelling, Reconstituted Gluconeogenesis System, TPI, TPI Modelling, Temperature Degradation of Gluconeogenic Intermediates
Snapshots: No snapshots
Simulation results of TPI experimental data for GAP and DHAP saturation.
Investigations: Central Carbon Metabolism of Sulfolobus solfata...
Studies: Model Gluconeogenesis
Assays: TPI Modelling
Kinetic characterisation of TPI. Experimental data for enzyme reaction rates with increasing concentrations of DHAP and GAP, and inhibition with 3PG and PEP.
Investigations: Central Carbon Metabolism of Sulfolobus solfata...
Studies: Model Gluconeogenesis
Assays: TPI, TPI Modelling
Mathematical model for TPI kinetics, GAP and DHAP saturation, and inhibition with 3PG and PEP.
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: Mathematica
Environment: Not specified
Organism: Sulfolobus solfataricus
Investigations: Central Carbon Metabolism of Sulfolobus solfata...
Studies: Model Gluconeogenesis
Abstract (Expand)
Authors: , Dominik Esser, Julia Kort, , ,
Date Published: 20th Jul 2013
Publication Type: Not specified
PubMed ID: 23865479
Citation: