Head of the group of Molecular Enzyme Technology and Biochemistry (Faculty of Chemistry) at the University of Duisburg-Essen. My research interest is on archaeal physiology with a special focuss on the central carbohydrate metabolism of (hyper)thermophilic Archaea and its regulation. The aim is to gain a systems level understanding by the combination of modern highthrouput analyses with classical biochemistry and molecular biology. Archaea possess many novel enzymes and pathways and our aim is to unravel pathway complexity and regulation. Among other we also focuss on stress reponse as well as biotechnological application of so called extremozymes and the thermoacidophilic Archaeon Sulfolobus acidocaldarius as novel platform organism for biotechnological applications.
SEEK ID: https://fairdomhub.org/people/119
Location: Germany
ORCID: https://orcid.org/0000-0002-9905-541X
Joined: 8th Jul 2009
This person has not yet tagged anything.
Related items
- Programmes (5)
- Projects (5)
- Institutions (2)
- Investigations (3+1)
- Studies (3)
- Assays (1)
- Data files (1+2)
- Publications (8)
- Presentations (0+9)
- Events (0+3)
The Snoep Lab’s core research efforts are in Computational Systems Biology; a combined experimental, modeling and theoretical approach to quantitatively understand the functional behavior of Biological Systems resulting from the characteristics of their components. Our main focus is on metabolism, of human pathogens such as Plasmodium falciparum, Mycobacterium tuberculosis, but also of breast cancer cell lines, and on modelling disease states such as glucose homeostatis in type 2 diabetes, and ...
Projects: Whole body modelling of glucose metabolism in malaria patients, Steroid biosynthesis, Yeast glycolytic oscillations, Computational pathway design for biotechnological applications, Glucose metabolism in cancer cell lines
Web page: http://www.sun.ac.za/english/faculty/science/biochemistry/research/snoep-group
The Deutsche Forschungsgemeinschaft (DFG) is the self-governing organisation for science and research in Germany. It serves all branches of science and the humanities. In organisational terms, the DFG is an association under private law. Its membership consists of German research universities, non-university research institutions, scientific associations and the Academies of Science and the Humanities.
Web page: https://www.dfg.de/en/index.jsp
ERA CoBioTech is an ERA-Net Cofund Action under H2020, which aims to strengthen the European Research Area (ERA) in the field of Biotechnology through enhanced cooperation and coordination of different national and regional research programs, promoting systems biology and synthetic biology as technology driversto speed up research and innovation in industrial biotechnology.
› By maximizing synergies between current mechanisms of biotechnology research funding in Europe; › By fostering the exchange ...
Projects: Sustainable co-production, BESTER, Rhodolive, HOTSOLUTE, TRALAMINOL, C1Pro, Cell4Chem
Web page: https://www.cobiotech.eu/
SysMO is a European transnational funding and research initiative on "Systems Biology of Microorganisms".
The goal pursued by SysMO was to record and describe the dynamic molecular processes going on in unicellular microorganisms in a comprehensive way and to present these processes in the form of computerized mathematical models.
Systems biology will raise biomedical and biotechnological research to a new quality level and contribute markedly to progress in understanding. Pooling European research ...
Projects: BaCell-SysMO, COSMIC, SUMO, KOSMOBAC, SysMO-LAB, PSYSMO, SCaRAB, MOSES, TRANSLUCENT, STREAM, SulfoSys, SysMO DB, SysMO Funders, SilicoTryp, Noisy-Strep
Web page: http://sysmo.net/
e:Bio - Innovations Competition Systems Biology
Projects: SulfoSys - Biotec, SBEpo - Systems Biology of Erythropoietin
Web page: http://www.fona.de/en/14276
Cyanobacteria are the only prokaryotes performing oxygenic photosynthesis. Theyhad and have tremendous influence on the biogeochemical cycles on Earth. Recently,cyanobacteria are increasingly investigated as cell factories for a sustainableeconomy. Despite their global, environmental and rising economic importance, ourknowledge on the regulation of their primary metabolism is fragmented.Cyanobacteria switch between photoautotrophic and heterotrophic modes ofmetabolism during day/night cycles or ...
Programme: DFG founded projects
Public web page: https://gepris.dfg.de/gepris/projekt/397695561
Start date: 1st Sep 2018
Organisms: Synechocystis sp. PCC 6803
The goal of the project is to establish a new biotechnological platform for the production of hydroxy-amino acids, since the current production of these important building blocks is very expensive. Enzyme engineering, systems biotechnology and metabolic engineering will be used in a synthetic biology approach.
Programme: SARCHI: Mechanistic modelling of health and epidemiology
Public web page: Not specified
Organisms: Caulobacter
Background- Thermophilic organisms are composed of both bacterial and archaeal species. The enzymes isolated from these species and from other extreme habitats are more robust to temperature, organic solvents and proteolysis. They often have unique substrate specificities and originate from novel metabolic pathways. Thermophiles as well as their stable enzymes (‘thermozymes’) are receiving increased attention for biotechnological applications.
The proposed project will establish thermophilic in ...
Programme: Era CoBioTech
Public web page: https://www.cobiotech.eu/call-information
Silicon cell model for the central carbohydrate metabolism of the archaeon Sulfolobus solfataricus under temperature variation
Programme: SysMO
Public web page: http://sulfosys.com/
Organisms: Sulfolobus solfataricus
Within the e:Bio - Innovationswettbewerb Systembiologie (Federal Ministry of Education and Research (BMBF)), the SulfoSYSBIOTECH consortium (10 partners), aim to unravel the complexity and regulation of the carbon metabolic network of the thermoacidophilic archaeon Sulfolobus solfataricus (optimal growth at 80°C and pH 3) in order to provide new catalysts ‘extremozymes’ for utilization in White Biotechnology.
Based on the available S. solfataricus genome scale metabolic model (Ulas et al., 2012) ...
Programme: e:Bio
Public web page: http://www.sulfosys.com/
Organisms: Sulfolobus solfataricus
Present in many industrial effluents and as intermediate of lignin degradation, phenol is a widespread pollutant causing serious environmental problems, due to its toxicity to animals and humans. Removal of phenol from the environment by bacteria has been studied extensively over the past decades, but only little is known about phenol biodegradation in hostile environments. We combined metabolomics and transcriptomics together with metabolic modelling to elucidate the organism’s response to growth ...
Submitter: Jacqueline Wolf
Studies: Comparison of S. solfataricus P2 grown on phenol vs D-glucose
Assays: Metabolome analysis: phenol vs D-glucose, RNA Sequencing: phenol vs D-glucose
Snapshots: No snapshots
Integrated systems biology approach including transcriptome, metabolome, proteome analyses and modelling to elucidate amino acid degradation in S. solfataricus P2.
Submitter: Jacqueline Wolf
Studies: Comparison of Sulfolobus solfataricus P2 grown on caseinhydrolysate and ...
Assays: Metabolic modelling of S. solfataricus during growth on casaminoacids, Metabolome analysis: Casaminoacids versus D-Glc, Proteome analysis: Casaminoacids versus D-Glc, RNA sequencing: Casaminoacids vs D-glc
Snapshots: No snapshots
Integrated systems biology approach including transcriptome, metabolome, biochemistry, proteome analyses and modelling to elucidate the catabolic pathway for L-fucose in S. solfataricus P2.
Submitter: Theresa Kouril
Studies: Comparison of S. solfataricus grown on l-fucose and d-glucose
Assays: Cell free extract activity measurements: L-fuc/d-glc, Metabolic model of Sulfolobus solfataricus, Proteome analysis: d-fuc / l-glu, RNA sequencing:l-fuc/d-glu, intracellular metabolome analysis: l-fucose vs d-glucose
Snapshots: No snapshots
To investigate phenol degradation in Saccharolobus solfataricus transcriptome and metabolome analyses were performed with cells grown on phenol as sole carbon source. Cells grown on D-glucose served as reference. Metabolic modelling was used to compare efficiency of phenol utilization in terms of oxygen demand and energy yield with the reference condition.
Submitter: Jacqueline Wolf
Investigation: Phenol degradation in Saccharolobus solfataricu...
Assays: Metabolome analysis: phenol vs D-glucose, RNA Sequencing: phenol vs D-glucose
Snapshots: No snapshots
To investigate amino acid degradation pathways in Sulfolobus solfataricus transcriptome, proteome and metabolome analyses were performed on cells grown on caseinhydrolysate as carbon source. Cells grown with glucose served as reference condition. Metabolic modelling was used to compare the efficiency of different degradation routes.
Submitter: Jacqueline Wolf
Investigation: Amino acid degradation in Sulfolobus solfataric...
Assays: Metabolic modelling of S. solfataricus during growth on casaminoacids, Metabolome analysis: Casaminoacids versus D-Glc, Proteome analysis: Casaminoacids versus D-Glc, RNA sequencing: Casaminoacids vs D-glc
Snapshots: No snapshots
Submitter: Theresa Kouril
Investigation: L-fucose degradation in Sulfolobus solfataricus P2
Assays: Cell free extract activity measurements: L-fuc/d-glc, Metabolic model of Sulfolobus solfataricus, Proteome analysis: d-fuc / l-glu, RNA sequencing:l-fuc/d-glu, intracellular metabolome analysis: l-fucose vs d-glucose
Snapshots: No snapshots
Submitter: Jacqueline Wolf
Assay type: Experimental Assay Type
Technology type: Enzymatic Activity Measurements
Investigation: L-fucose degradation in Sulfolobus solfataricus P2
Organisms: Sulfolobus solfataricus
SOPs: No SOPs
Data files: Activity assay L-fuc vs D-glc
Snapshots: No snapshots
Activity assays in cell free extracts of S. solfataricus grown on either L-fucose or D-glucose and activity assays with recombinant proteins
Creators: Jacqueline Wolf, Katharina Kruse, Bettina Siebers, Theresa Kouril
Submitter: Jacqueline Wolf
Abstract (Expand)
Authors: Lu Shen, Martha Kohlhaas, Junichi Enoki, Roland Meier, Bernhard Schönenberger, Roland Wohlgemuth, Robert Kourist, Felix Niemeyer, David van Niekerk, Christopher Bräsen, Jochen Niemeyer, Jacky Snoep, Bettina Siebers
Date Published: 1st Dec 2020
Publication Type: Not specified
DOI: 10.1038/s41467-020-14830-y
Citation: Nat Commun 11(1) : 82
Abstract (Expand)
Authors: P. Haferkamp, B. Tjaden, L. Shen, C. Brasen, T. Kouril, B. Siebers
Date Published: 30th Apr 2019
Publication Type: Journal
PubMed ID: 31031731
Citation: Front Microbiol. 2019 Apr 12;10:757. doi: 10.3389/fmicb.2019.00757. eCollection 2019.
Abstract (Expand)
Authors: T. Kouril, J. J. Eicher, B. Siebers, J. L. Snoep
Date Published: 7th Oct 2017
Publication Type: Not specified
PubMed ID: 28982396
Citation: Microbiology. 2017 Nov;163(11):1604-1612. doi: 10.1099/mic.0.000542. Epub 2017 Oct 6.
Abstract (Expand)
Authors: A. S. Figueiredo, T. Kouril, D. Esser, P. Haferkamp, P. Wieloch, D. Schomburg, P. Ruoff, B. Siebers, J. Schaber
Date Published: 12th Jul 2017
Publication Type: Not specified
PubMed ID: 28692669
Citation: PLoS One. 2017 Jul 10;12(7):e0180331. doi: 10.1371/journal.pone.0180331. eCollection 2017.
Abstract (Expand)
Authors: Helge Stark, Jacqueline Wolf, Andreas Albersmeier, Trong K. Pham, Julia D. Hofmann, Bettina Siebers, Jörn Kalinowski, Phillip C. Wright, Meina Neumann-Schaal, Dietmar Schomburg
Date Published: 29th May 2017
Publication Type: Not specified
DOI: 10.1111/febs.14105
Citation: FEBS J 86 : 156
Abstract (Expand)
Authors: J. Wolf, H. Stark, K. Fafenrot, A. Albersmeier, T. K. Pham, K. B. Muller, B. Meyer, L. Hoffmann, L. Shen, S. P. Albaum, T. Kouril, K. Schmidt-Hohagen, M. Neumann-Schaal, C. Brasen, J. Kalinowski, P. C. Wright, S. V. Albers, D. Schomburg, B. Siebers
Date Published: 10th Sep 2016
Publication Type: Not specified
PubMed ID: 27611014
Citation: Mol Microbiol. 2016 Sep 9. doi: 10.1111/mmi.13498.
Abstract (Expand)
Authors: , Dominik Esser, Julia Kort, , ,
Date Published: 20th Jul 2013
Publication Type: Not specified
PubMed ID: 23865479
Citation:
All authors
Abstract (Expand)
Authors: , Dominik Esser, , , , , , Julia Reimann, , , Daniela Teichmann, Marleen van Wolferen, , , , , , , , , ,
Date Published: 31st Aug 2009
Publication Type: Not specified
PubMed ID: 19802714
Citation: