SEEK ID: https://fairdomhub.org/people/1317
Location: Germany
ORCID: Not specified
Joined: 26th Mar 2019
Expertise: Not specified
Tools: Not specified
This person has not yet tagged anything.
Related items
- Programmes (2)
- Projects (2)
- Institutions (1)
- Investigations (0+1)
- Studies (4)
- Assays (18)
- Data files (13+1)
- Publications (2)
The Snoep Lab’s core research efforts are in Computational Systems Biology; a combined experimental, modeling and theoretical approach to quantitatively understand the functional behavior of Biological Systems resulting from the characteristics of their components. Our main focus is on metabolism, of human pathogens such as Plasmodium falciparum, Mycobacterium tuberculosis, but also of breast cancer cell lines, and on modelling disease states such as glucose homeostatis in type 2 diabetes, and ...
Projects: Whole body modelling of glucose metabolism in malaria patients, Steroid biosynthesis, Yeast glycolytic oscillations, Computational pathway design for biotechnological applications, Glucose metabolism in cancer cell lines
Web page: http://www.sun.ac.za/english/faculty/science/biochemistry/research/snoep-group
The Deutsche Forschungsgemeinschaft (DFG) is the self-governing organisation for science and research in Germany. It serves all branches of science and the humanities. In organisational terms, the DFG is an association under private law. Its membership consists of German research universities, non-university research institutions, scientific associations and the Academies of Science and the Humanities.
Web page: https://www.dfg.de/en/index.jsp
Cyanobacteria are the only prokaryotes performing oxygenic photosynthesis. Theyhad and have tremendous influence on the biogeochemical cycles on Earth. Recently,cyanobacteria are increasingly investigated as cell factories for a sustainableeconomy. Despite their global, environmental and rising economic importance, ourknowledge on the regulation of their primary metabolism is fragmented.Cyanobacteria switch between photoautotrophic and heterotrophic modes ofmetabolism during day/night cycles or ...
Programme: DFG founded projects
Public web page: https://gepris.dfg.de/gepris/projekt/397695561
Start date: 1st Sep 2018
Organisms: Synechocystis sp. PCC 6803
The goal of the project is to establish a new biotechnological platform for the production of hydroxy-amino acids, since the current production of these important building blocks is very expensive. Enzyme engineering, systems biotechnology and metabolic engineering will be used in a synthetic biology approach.
Programme: SARCHI: Mechanistic modelling of health and epidemiology
Public web page: Not specified
Organisms: Caulobacter
One pot cascade - pathway analysis for the purified Caulinobacter crescentus Weimberg pathway enzymes. Effect of co-factor recycling, removal of XLA, and optimisation on Xylose to aKG is studied.
https://jjj.bio.vu.nl/models/experiments/shen2020_fig3a/simulate https://jjj.bio.vu.nl/models/experiments/shen2020_fig3b/simulate https://jjj.bio.vu.nl/models/experiments/shen2020_fig3c/simulate https://jjj.bio.vu.nl/models/experiments/shen2020_fig3d/simulate
Submitter: Jacky Snoep
Investigation: Caulobacter crescentus Weimberg pathway
Assays: One pot cascade 10, One pot cascade 12, One pot cascade 13, One pot cascade 16
Snapshots: No snapshots
Initial rate kinetics for the purified Caulinobacter crescentus Weimberg pathway enzymes, including substrate dependence, and product inhibition.
Submitter: Jacky Snoep
Investigation: Caulobacter crescentus Weimberg pathway
Snapshots: No snapshots
Progress curves for the purified Caulinobacter crescentus Weimberg pathway enzymes. Each reaction is followed up to completion and then the next enzyme in the pathway is added, i.e. XDH-XLA-XAD-KDXD and finally KGSADH
Submitter: Jacky Snoep
Investigation: Caulobacter crescentus Weimberg pathway
Assays: Progress curve KDXD, Progress curve KGSADH, Progress curve XAD, Progress curve XDH, Progress curve XLA, Progress curves combined
Snapshots: No snapshots
Cell free extract - pathway analysis for Caulinobacter crescentus Weimberg pathway enzymes. Effect of co-factor recycling, and Mn2+ on Xylose to aKG conversion is studied.
Submitter: Jacky Snoep
Investigation: Caulobacter crescentus Weimberg pathway
Assays: Cell free extract, with Mn and NAD recycling, Cell free extract, with Mn, no NAD recycling, Cell free extract, without added Mn, with NAD recycling, Steady state cell free extract, with Mn and NAD recycling
Snapshots: No snapshots
Kinetic characterisation and mathematical modelling of XDH.
Submitter: Jacky Snoep
Biological problem addressed: Model Analysis Type
Investigation: Caulobacter crescentus Weimberg pathway
Study: Initial rate kinetics
Organisms: No organisms
Models: XDH model
SOPs: No SOPs
Data files: XDH-initial rate kinetics data
Snapshots: Snapshot 1
Kinetic characterisation and mathematical modelling of XLA.
Submitter: Jacky Snoep
Biological problem addressed: Model Analysis Type
Investigation: Caulobacter crescentus Weimberg pathway
Study: Initial rate kinetics
Organisms: No organisms
Models: XLA model
SOPs: No SOPs
Data files: XLA-initial rate kinetics data
Snapshots: Snapshot 1
Kinetic characterisation and mathematical modelling of XAD.
Submitter: Jacky Snoep
Biological problem addressed: Model Analysis Type
Investigation: Caulobacter crescentus Weimberg pathway
Study: Initial rate kinetics
Organisms: No organisms
Models: XAD model
SOPs: No SOPs
Data files: XAD-initial rate kinetics data
Snapshots: Snapshot 1
Kinetic characterisation and mathematical modelling of KDXD.
Submitter: Jacky Snoep
Biological problem addressed: Model Analysis Type
Investigation: Caulobacter crescentus Weimberg pathway
Study: Initial rate kinetics
Organisms: No organisms
Models: KDXD model
SOPs: No SOPs
Data files: KDXD-initial rate kinetics data
Snapshots: Snapshot 1
Kinetic characterisation and mathematical modelling of KGSADH.
Submitter: Jacky Snoep
Biological problem addressed: Model Analysis Type
Investigation: Caulobacter crescentus Weimberg pathway
Study: Initial rate kinetics
Organisms: No organisms
Models: KGSADH model
SOPs: No SOPs
Data files: KGSADH-initial rate kinetics data
Snapshots: Snapshot 1
Conversion of Xyl to XLAC by Caulobacter crescentus XDH, measured in NMR.
Submitter: Jacky Snoep
Biological problem addressed: Model Analysis Type
Investigation: Caulobacter crescentus Weimberg pathway
Study: Progress curves
Organisms: No organisms
Models: Progress curve analysis (shen1), Progress curve analysis XDH
SOPs: No SOPs
Data files: Progress curve analysis data
Snapshots: Snapshot 1, Snapshot 2
Conversion of XLAC to XA by Caulobacter crescentus XLA, measured in NMR.
Submitter: Jacky Snoep
Biological problem addressed: Model Analysis Type
Investigation: Caulobacter crescentus Weimberg pathway
Study: Progress curves
Organisms: No organisms
Models: Progress curve analysis (shen1), Progress curve analysis XLA
SOPs: No SOPs
Data files: Progress curve analysis data
Snapshots: Snapshot 1, Snapshot 2
Conversion of XA to KDX by Caulobacter crescentus XAD, measured in NMR.
Submitter: Jacky Snoep
Biological problem addressed: Model Analysis Type
Investigation: Caulobacter crescentus Weimberg pathway
Study: Progress curves
Organisms: No organisms
Models: Progress curve analysis (shen1), Progress curve analysis XAD
SOPs: No SOPs
Data files: Progress curve analysis data
Snapshots: Snapshot 1, Snapshot 2
Conversion of KDX to KGSA by Caulobacter crescentus KDXD, measured in NMR.
Submitter: Jacky Snoep
Biological problem addressed: Model Analysis Type
Investigation: Caulobacter crescentus Weimberg pathway
Study: Progress curves
Organisms: No organisms
Models: Progress curve analysis (shen1), Progress curve analysis KDXD
SOPs: No SOPs
Data files: Progress curve analysis data
Snapshots: Snapshot 1, Snapshot 2
Conversion of KGSA to KG by Caulobacter crescentus KGSADH, measured in NMR.
Submitter: Jacky Snoep
Biological problem addressed: Model Analysis Type
Investigation: Caulobacter crescentus Weimberg pathway
Study: Progress curves
Organisms: No organisms
Models: Progress curve analysis (shen1), Progress curve analysis KGSADH
SOPs: No SOPs
Data files: Progress curve analysis data
Snapshots: Snapshot 1, Snapshot 2
Conversion of XYL to KG by sequential addition of Weimberg pathway enzymes of Caulobacter crescentus, measured in NMR. https://jjj.bio.vu.nl/models/experiments/shen2020_fig2c/simulate
Submitter: Jacky Snoep
Biological problem addressed: Model Analysis Type
Investigation: Caulobacter crescentus Weimberg pathway
Study: Progress curves
Organisms: No organisms
Models: Progress curve analysis (shen1), Progress curve analysis combined
SOPs: No SOPs
Data files: Progress curve analysis data
Snapshots: Snapshot 1, Snapshot 2
Conversion of XYL to KG in one pot cascade of Weimberg pathway enzymes of Caulobacter crescentus, measured in NMR. https://jjj.bio.vu.nl/models/experiments/shen2020_fig3a/simulate
Submitter: Jacky Snoep
Biological problem addressed: Model Analysis Type
Investigation: Caulobacter crescentus Weimberg pathway
Study: One pot cascade
Organisms: No organisms
Models: Cascade analysis (shen2), One-Pot-Cascade 10
SOPs: No SOPs
Data files: One-Pot-Cascade 10 data
Snapshots: Snapshot 1, Snapshot 2
Conversion of XYL to KG in one pot cascade of Weimberg pathway enzymes of Caulobacter crescentus, omitting XLA, measured in NMR. https://jjj.bio.vu.nl/models/experiments/shen2020_fig3c/simulate
Submitter: Jacky Snoep
Biological problem addressed: Model Analysis Type
Investigation: Caulobacter crescentus Weimberg pathway
Study: One pot cascade
Organisms: No organisms
Models: Cascade analysis (shen2), One pot cascade 12
SOPs: No SOPs
Data files: One-Pot-Cascade 12 data
Snapshots: Snapshot 1, Snapshot 2
Conversion of XYL to KG in one pot cascade of Weimberg pathway enzymes of Caulobacter crescentus, with NAD recycling, measured in NMR. https://jjj.bio.vu.nl/models/experiments/shen2020_fig3b/simulate
Submitter: Jacky Snoep
Biological problem addressed: Model Analysis Type
Investigation: Caulobacter crescentus Weimberg pathway
Study: One pot cascade
Organisms: No organisms
Models: Cascade analysis (shen2), One-Pot-Cascade 13
SOPs: No SOPs
Data files: One-Pot-Cascade 13 data
Snapshots: Snapshot 1, Snapshot 2
Conversion of XYL to KG in one pot cascade of Weimberg pathway enzymes of Caulobacter crescentus, using old enzymes with optimal protein distribution, with NAD recycling, measured in NMR. https://jjj.bio.vu.nl/models/experiments/shen2020_fig3d/simulate
Submitter: Jacky Snoep
Biological problem addressed: Model Analysis Type
Investigation: Caulobacter crescentus Weimberg pathway
Study: One pot cascade
Organisms: No organisms
Models: Cascade analysis (shen2), One pot cascade 16
SOPs: No SOPs
Data files: One-Pot-Cascade 16 data
Snapshots: Snapshot 1, Snapshot 2
Conversion of XYL to KG in a cell free extract of Caulobacter crescentus, with 0.15 mM Mn2+ added, and with NAD recycling, metabolites measured enzymatically. https://jjj.bio.vu.nl/models/experiments/shen2020_fig4b/simulate
Submitter: Jacky Snoep
Biological problem addressed: Model Analysis Type
Investigation: Caulobacter crescentus Weimberg pathway
Study: Cell free extract
Organisms: No organisms
Models: CFE Mn NADrec, CFE analysis (shen2)
SOPs: No SOPs
Data files: CFE Mn NADrec data
Snapshots: Snapshot 1, Snapshot 2
Conversion of XYL to KG in a cell free extract of Caulobacter crescentus, with 0.15 mM Mn2+ added, but no NAD recycling, metabolites measured enzymatically. https://jjj.bio.vu.nl/models/experiments/shen2020_fig4c/simulate
Submitter: Jacky Snoep
Biological problem addressed: Model Analysis Type
Investigation: Caulobacter crescentus Weimberg pathway
Study: Cell free extract
Organisms: No organisms
Models: CFE Mn noNADrec, CFE analysis (shen2)
SOPs: No SOPs
Data files: CFE Mn no-NADrec data
Snapshots: Snapshot 1, Snapshot 2
Conversion of XYL to KG in a cell free extract of Caulobacter crescentus, without Mn2+ added, but with NAD recycling, metabolites measured enzymatically. https://jjj.bio.vu.nl/models/experiments/shen2020_fig4d/simulate
Submitter: Jacky Snoep
Biological problem addressed: Model Analysis Type
Investigation: Caulobacter crescentus Weimberg pathway
Study: Cell free extract
Organisms: No organisms
Models: CFE analysis (shen2), CFE no Mn, with NADrec
SOPs: No SOPs
Data files: CFE no-Mn but with NADrec data
Snapshots: Snapshot 1, Snapshot 2
Data files for the conversion of XYL to KG, via the sequential addition of the Caulobacter crescentus Weimberg pathway enzymes, XDH, XLA, XAD, KDXD, KGSADH.
Creators: Jacky Snoep, Lu Shen
Submitter: Jacky Snoep
Investigations: Caulobacter crescentus Weimberg pathway
Studies: Progress curves
Assays: Progress curve KDXD, Progress curve KGSADH, Progress curve XAD, Progress curve XDH, Progress curve XLA, Progress curves combined
Initial rate kinetics for the α-ketoglutarate semialdehyde dehydrogenase of Caulobacter crescentus, α-ketoglutarate semialdehyde and NAD saturation, and α-ketoglutarate, NADH and 2-keto-3-deoxy-D-xylonate inhibition.
Creators: Jacky Snoep, Lu Shen
Submitter: Jacky Snoep
Investigations: Caulobacter crescentus Weimberg pathway
Studies: Initial rate kinetics
Assays: KGSADH
Initial rate kinetics for the 2-keto-3-deoxy-D-xylonate dehydrates of Caulobacter crescentus, 2-keto-3-deoxy-D-xylonate saturation and inhibitor titrations.
Creators: Jacky Snoep, Lu Shen
Submitter: Jacky Snoep
Initial rate kinetics for the xylonate dehydratase of Caulobacter crescentus, xylonate saturation.
Creators: Jacky Snoep, Lu Shen
Submitter: Jacky Snoep
Initial rate kinetics for the xylonolactonase reaction of Caulobacter crescentus, xylonolactone saturation for the enzyme catalysed reaction, and for the non-enzymatic reaction.
Creators: Jacky Snoep, Lu Shen
Submitter: Jacky Snoep
Initial rate kinetics for xylose dehydrogenase of Caulobacter crescentus, saturation with xylose and NAD, and inhibition by NADH and xylonolactone.
Data files for the conversion of XYL to KG, via the Caulobacter crescentus Weimberg pathway, using old enzymes: XDH, XLA, XAD, KDXD, KGSADH, with NAD recycling, and optimal protein distribution.
Creators: Jacky Snoep, Lu Shen
Submitter: Jacky Snoep
Investigations: Caulobacter crescentus Weimberg pathway
Studies: One pot cascade
Assays: One pot cascade 16
Data files for the conversion of XYL to KG, in Caulobacter crescentus cell free extract, with NAD recycling, and additional Mn2+ (0.15 mM) added.
Creators: Jacky Snoep, Lu Shen
Submitter: Jacky Snoep
Investigations: Caulobacter crescentus Weimberg pathway
Studies: Cell free extract
Data files for the conversion of XYL to KG, in Caulobacter crescentus cell free extract, without NAD recycling, but with additional Mn2+ (0.15 mM) added.
Creators: Jacky Snoep, Lu Shen
Submitter: Jacky Snoep
Investigations: Caulobacter crescentus Weimberg pathway
Studies: Cell free extract
Data files for the conversion of XYL to KG, in Caulobacter crescentus cell free extract, with NAD recycling, but without additional Mn2+ added.
Creators: Jacky Snoep, Lu Shen
Submitter: Jacky Snoep
Investigations: Caulobacter crescentus Weimberg pathway
Studies: Cell free extract
Data files for the conversion of XYL to KG, via the Caulobacter crescentus Weimberg pathway enzymes, XDH, XLA, XAD, KDXD, KGSADH.
Creators: Jacky Snoep, Lu Shen
Submitter: Jacky Snoep
Investigations: Caulobacter crescentus Weimberg pathway
Studies: One pot cascade
Assays: One pot cascade 10
Data files for the conversion of XYL to KG, via the Caulobacter crescentus Weimberg pathway enzymes, omitting XLA: XDH, XAD, KDXD, KGSADH.
Creators: Jacky Snoep, Lu Shen
Submitter: Jacky Snoep
Investigations: Caulobacter crescentus Weimberg pathway
Studies: One pot cascade
Assays: One pot cascade 12
Data files for the conversion of XYL to KG, via the Caulobacter crescentus Weimberg pathway enzymes: XDH, XLA, XAD, KDXD, KGSADH, with NAD recycling.
Creators: Jacky Snoep, Lu Shen
Submitter: Jacky Snoep
Investigations: Caulobacter crescentus Weimberg pathway
Studies: One pot cascade
Assays: One pot cascade 13
Abstract (Expand)
Authors: Lu Shen, Martha Kohlhaas, Junichi Enoki, Roland Meier, Bernhard Schönenberger, Roland Wohlgemuth, Robert Kourist, Felix Niemeyer, David van Niekerk, Christopher Bräsen, Jochen Niemeyer, Jacky Snoep, Bettina Siebers
Date Published: 1st Dec 2020
Publication Type: Not specified
DOI: 10.1038/s41467-020-14830-y
Citation: Nat Commun 11(1) : 82
Abstract (Expand)
Authors: P. Haferkamp, B. Tjaden, L. Shen, C. Brasen, T. Kouril, B. Siebers
Date Published: 30th Apr 2019
Publication Type: Journal
PubMed ID: 31031731
Citation: Front Microbiol. 2019 Apr 12;10:757. doi: 10.3389/fmicb.2019.00757. eCollection 2019.