Phosphoglycerate kinase acts as a futile cycle at high temperature.


In (hyper)thermophilic organisms metabolic processes have to be adapted to function optimally at high temperature. We compared the gluconeogenic conversion of 3-phosphoglycerate via 1,3-bisphosphoglycerate to glyceraldehyde-3-phosphate at 30 degrees C and at 70 degrees C. At 30 degrees C it was possible to produce 1,3-bisphosphoglycerate from 3-phosphoglycerate with phosphoglycerate kinase, but at 70 degrees C, 1,3-bisphosphoglycerate was dephosphorylated rapidly to 3-phosphoglycerate, effectively turning the phosphoglycerate kinase into a futile cycle. When phosphoglycerate kinase was incubated together with glyceraldehyde 3-phosphate dehydrogenase it was possible to convert 3-phosphoglycerate to glyceraldehyde 3-phosphate, both at 30 degrees C and at 70 degrees C, however, at 70 degrees C only low concentrations of product were observed due to thermal instability of glyceraldehyde 3-phosphate. Thus, thermolabile intermediates challenge central metabolic reactions and require special adaptation strategies for life at high temperature.


PubMed ID: 28982396

Projects: SulfoSys, SulfoSys - Biotec

Publication type: Not specified

Journal: Microbiology

Citation: Microbiology. 2017 Nov;163(11):1604-1612. doi: 10.1099/mic.0.000542. Epub 2017 Oct 6.

Date Published: 7th Oct 2017

Registered Mode: Not specified

Authors: T. Kouril, J. J. Eicher, B. Siebers, J. L. Snoep

help Submitter

Views: 1542

Created: 13th Mar 2019 at 11:52

help Tags

This item has not yet been tagged.

help Attributions


Powered by
Copyright © 2008 - 2022 The University of Manchester and HITS gGmbH

By continuing to use this site you agree to the use of cookies