A model for the PGK reaction of yeast in presence or absence of the ATP recycling reactions
SEEK ID: https://fairdomhub.org/assays/570
Modelling analysis
Projects: SulfoSys, SulfoSys - Biotec
Investigation: Phosphoglycerate kinase acts as a futile cycle at high temperature
Study: PGK-30C
Assay position:
Biological problem addressed: Model Analysis Type
Organisms: No organisms
Export PNG
Views: 2637
Created: 28th Sep 2017 at 10:28
Last updated: 8th Nov 2017 at 14:21
This item has not yet been tagged.
Related items
Projects: PSYSMO, MOSES, SysMO DB, SysMO-LAB, SulfoSys, SulfoSys - Biotec, Whole body modelling of glucose metabolism in malaria patients, FAIRDOM, Molecular Systems Biology, COMBINE Multicellular Modelling, HOTSOLUTE, Steroid biosynthesis, Yeast glycolytic oscillations, Computational pathway design for biotechnological applications, SCyCode The Autotrophy-Heterotrophy Switch in Cyanobacteria: Coherent Decision-Making at Multiple Regulatory Layers, Project Coordination, WP 3: Drug release kinetics study, Glucose metabolism in cancer cell lines
Institutions: Manchester Centre for Integrative Systems Biology, University of Manchester, University of Stellenbosch, University of Manchester - Department of Computer Science, Stellenbosch University
SysMO is a European transnational funding and research initiative on "Systems Biology of Microorganisms".
The goal pursued by SysMO was to record and describe the dynamic molecular processes going on in unicellular microorganisms in a comprehensive way and to present these processes in the form of computerized mathematical models.
Systems biology will raise biomedical and biotechnological research to a new quality level and contribute markedly to progress in understanding. Pooling European research ...
Projects: BaCell-SysMO, COSMIC, SUMO, KOSMOBAC, SysMO-LAB, PSYSMO, SCaRAB, MOSES, TRANSLUCENT, STREAM, SulfoSys, SysMO DB, SysMO Funders, SilicoTryp, Noisy-Strep
Web page: http://sysmo.net/
e:Bio - Innovations Competition Systems Biology
Projects: SulfoSys - Biotec, SBEpo - Systems Biology of Erythropoietin
Web page: http://www.fona.de/en/14276
Silicon cell model for the central carbohydrate metabolism of the archaeon Sulfolobus solfataricus under temperature variation
Programme: SysMO
Public web page: http://sulfosys.com/
Organisms: Sulfolobus solfataricus
Within the e:Bio - Innovationswettbewerb Systembiologie (Federal Ministry of Education and Research (BMBF)), the SulfoSYSBIOTECH consortium (10 partners), aim to unravel the complexity and regulation of the carbon metabolic network of the thermoacidophilic archaeon Sulfolobus solfataricus (optimal growth at 80°C and pH 3) in order to provide new catalysts ‘extremozymes’ for utilization in White Biotechnology.
Based on the available S. solfataricus genome scale metabolic model (Ulas et al., 2012) ...
Programme: e:Bio
Public web page: http://www.sulfosys.com/
Organisms: Sulfolobus solfataricus
The gluconeogenic conversion of 3-phosphoglycerate via 1,3-bisphosphoglycerate to glyceraldehyde-3-phosphate was compared at 30 C and at 70 C. At 30 C it was possible to produce 1,3-bisphosphoglycerate from 3-phosphoglycerate with phosphoglycerate kinase, but at 70 C, 1,3- bisphosphoglycerate was dephosphorylated rapidly to 3-phosphoglycerate, effectively turning the phosphoglycerate kinase into a futile cycle. At both temperatures it was possible to convert 3-phosphoglycerate to glyceraldehyde ...
Submitter: Jacky Snoep
Studies: BPG stability, PGK-30C, PGK-70C, PGK-GAPDH 30C & 70C
Assays: BPG degradation, BPG stability analysis, PGK - GAPDH models, PGK 30C data, PGK 30C model, PGK 70 data, PGK 70C model, PGK-GAPDH 30, PGK-GAPDH 70
Snapshots: No snapshots
PGK reaction at 30 C. Yeast PGK was incubated at 30 C, in the presence or absence of the ATP recycling system, and the conversion of 3 PG to BPG was followed. SED-ML simulations Fig. 1A: https://jjj.bio.vu.nl/models/experiments/kouril2017_fig1a/simulate
Submitter: Jacky Snoep
Investigation: Phosphoglycerate kinase acts as a futile cycle ...
Assays: PGK 30C data, PGK 30C model
Snapshots: No snapshots
PGK yeast Fig1a
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: Mathematica
Environment: Mathematica
Organism: Saccharomyces cerevisiae
Investigations: Phosphoglycerate kinase acts as a futile cycle ...
Studies: PGK-30C
Assays: PGK 30C model
PGK yeast with/without recycling
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
Organism: Saccharomyces cerevisiae
Investigations: Phosphoglycerate kinase acts as a futile cycle ...
Studies: PGK-30C
Assays: PGK 30C model