This experiment uses a low-copy plasmid based system (MG1655 Δlac FF(-41.5)/RW50) for measuring FNR activity. Initial acetate calibration of the chemostat with the MG1655 Δlac strain was carried out, with β-galactosidase activity from the FF(-41.5)/RW50 reporter plasmid measured at 100%, 80%, 50%, 20% and 0% aerobiosis levels. Finally, the aerobiosis levels were re-determined by calculating the actual acetate flux in the sampled chemostat runs.
Note: the strain used (MG1655 Δlac) is not the same source as as our SUMO MG1655 background and so may not be isogenic to the SUMO MG1655 strain. There is also a low copy number plasmid present.
SEEK ID: https://fairdomhub.org/assays/32
Experimental assay
Projects: SUMO
Investigation: Steady state studies for different oxygen availability in Escherichia coli
Assay position:
Assay type: Experimental Assay Type
Technology type: Technology Type
Organisms: Escherichia coli
Export PNG
Views: 3204
Created: 9th Apr 2010 at 09:40
Last updated: 8th Nov 2017 at 14:21
This item has not yet been tagged.
Related items
- People (1)
- Programmes (1)
- Projects (1)
- Investigations (1)
- Studies (1)
- Data files (2)
- SOPs (3)
- Publications (1)
Projects: SUMO
Institutions: University of Stuttgart
I'm interested in the application and development of methods of systems theory in biology (systems biology). In particulary I work on the following topics: Thermodynamic constraints on biochemical network; Model reduction; Modeling and Analysis of metabolic regulation.
SysMO is a European transnational funding and research initiative on "Systems Biology of Microorganisms".
The goal pursued by SysMO was to record and describe the dynamic molecular processes going on in unicellular microorganisms in a comprehensive way and to present these processes in the form of computerized mathematical models.
Systems biology will raise biomedical and biotechnological research to a new quality level and contribute markedly to progress in understanding. Pooling European research ...
Projects: BaCell-SysMO, COSMIC, SUMO, KOSMOBAC, SysMO-LAB, PSYSMO, SCaRAB, MOSES, TRANSLUCENT, STREAM, SulfoSys, SysMO DB, SysMO Funders, SilicoTryp, Noisy-Strep
Web page: http://sysmo.net/
"Systems Understanding of Microbial Oxygen responses" (SUMO) investigates how Escherichia coli senses oxygen, or the associated changes in oxidation/reduction balance, via the Fnr and ArcA proteins, how these systems interact with other regulatory systems, and how the redox response of an E. coli population is generated from the responses of single cells. There are five sub-projects to determine system properties and behaviour and three sub-projects to employ different and complementary modelling ...
Programme: SysMO
Public web page: http://www.sysmo.net/index.php?index=55
Organisms: Escherichia coli, Escherichia coli K-12
Changing the oxygen availability leads to an adaptation of Escherichia coli at different biological levels. After pertubation of oxygen in chemostat experiments the microorganism(s) will come back to another steady state. This investigation deals with these stationary responses of Escherichia coli within the aerobiosis scale. The change for different biological variables, in different areas of the organism like the electron transport chain, the TCA cycle or globally is investigated by wildtype ...
Submitter: Michael Ederer
Studies: Basic regulatory principles of Escherichia coli’s electron transport cha..., Determination of the impact of specific enzyme reactions and regulatory ..., Quantitative analysis of catabolic carbon and electron fluxes in E. coli..., The Escherichia coli steady state response to oxygen: from molecular int...
Assays: Analysis of by-product formation rates in MG1655, Analysis of gene expression rates at different aerobiosis levels via RT-PCR, ArcA phosphorylation at different aerobiosis levels (steady states), Characterization of E. coli MG1655 and ∆sdhC and ∆frdA isogenic mutant s..., Determination of intracellular metabolite concentrations, Determination of intracellular redox state by means of NAD/NADH ratio, Determination of intracellular redox state by means of ubiquinones (oxd/..., FNR activity at different aerobiosis levels (steady state), Kinetic modelling of Escherichia coli's electron transport chain, Kinetic modelling of Escherichia coli's electron transport chain coupled..., Literature Data from Alexeeva et al., J. Bacteriol., 2000, 2002, 2003, Measurement of cytochrome numbers, Physiological measurements from Sheffield chemostat, Steady State Oxygen Response of E. coli WT and two Electron Transport Ch..., Transcriptional profiling of steady states at different aerobiosis levels
Snapshots: No snapshots
Submitter: Michael Ederer
Investigation: Steady state studies for different oxygen avail...
Assays: ArcA phosphorylation at different aerobiosis levels (steady states), Determination of intracellular redox state by means of NAD/NADH ratio, Determination of intracellular redox state by means of ubiquinones (oxd/..., FNR activity at different aerobiosis levels (steady state), Literature Data from Alexeeva et al., J. Bacteriol., 2000, 2002, 2003, Measurement of cytochrome numbers, Physiological measurements from Sheffield chemostat, Steady State Oxygen Response of E. coli WT and two Electron Transport Ch..., Transcriptional profiling of steady states at different aerobiosis levels
Snapshots: No snapshots
A .pdf files showing graphs of FNR activity at varying aerobiosis levels
Top graph shows no acetate re-calibration Bottom graph shows data with acetate re-calibration
This .csv file shows FNR activity at different aerobiosis levels
Columns a_old Desired aerobiosis level (Aerobiosis units or %AAU) Bgal_activity Average FNR reporter activity (Miller units) Bgal_STDEV STDEV of FNR reporter activities (Miller units) rDOT(μM) Dissolved oxygen tension (μM) DCW DCW (g/L) [acetate] Extracellular acetate concentration (mM) Qacetate Acetate flux (mmoles/h/gDCW) a_new Actual aerobiosis level in sampled chemostat
Creator: Katja Bettenbrock
Submitter: The JERM Harvester
Investigations: Analysis of Escherichia coli with linear electr..., Dynamical studies for different oxygen availabi..., Steady state studies for different oxygen avail...
Studies: Analysis of Escherichia coli strains with linea..., Determination of the impact of specific enzyme ..., The Escherichia coli dynamical response to oxyg..., The Escherichia coli steady state response to o...
Assays: Analysis of by-product formation rates in MG1655, Analysis of gene expression rates at different ..., ArcA phosphorylation at different aerobiosis le..., Characterization of E. coli MG1655 and ∆sdhC an..., FNR activity at different aerobiosis levels (st..., Gene expression analysis of mutants with linear..., Physiological measurements from Sheffield chemo..., Transcriptional profiling of E. coli during ana...
Creator: Martijn Bekker
Submitter: The JERM Harvester
Investigations: Steady state studies for different oxygen avail...
Studies: Determination of the impact of specific enzyme ..., The Escherichia coli steady state response to o...
Assays: Analysis of by-product formation rates in MG1655, Determination of intracellular metabolite conce..., Determination of intracellular redox state by m..., FNR activity at different aerobiosis levels (st..., Physiological measurements from Sheffield chemo...
This SOP describes the SUMO procedure for determining B-galactosidase activities.
Creator: Matthew Rolfe
Submitter: Matthew Rolfe
Abstract (Expand)
Editor:
Date Published: 27th Mar 2014
Publication Type: Not specified
PubMed ID: 24723921
Citation: