Publications

Abstract

Not specified

Author: Timon Oefelein

Date Published: 20th Nov 2018

Journal: SCS

Abstract (Expand)

In systems biology, one of the major tasks is to tailor model complexity to information content of the data. A useful model should describe the data and produce well-determined parameter estimates and predictions. Too small of a model will not be able to describe the data whereas a model which is too large tends to overfit measurement errors and does not provide precise predictions. Typically, the model is modified and tuned to fit the data, which often results in an oversized model. To restore the balance between model complexity and available measurements, either new data has to be gathered or the model has to be reduced. In this manuscript, we present a data-based method for reducing non-linear models. The profile likelihood is utilised to assess parameter identifiability and designate likely candidates for reduction. Parameter dependencies are analysed along profiles, providing context-dependent suggestions for the type of reduction. We discriminate four distinct scenarios, each associated with a specific model reduction strategy. Iterating the presented procedure eventually results in an identifiable model, which is capable of generating precise and testable predictions. Source code for all toy examples is provided within the freely available, open-source modelling environment Data2Dynamics based on MATLAB available at http://www.data2dynamics.org/, as well as the R packages dMod/cOde available at https://github.com/dkaschek/. Moreover, the concept is generally applicable and can readily be used with any software capable of calculating the profile likelihood.

Authors: T. Maiwald, H. Hass, Bernhard Steiert, Joep Vanlier, R. Engesser, A. Raue, F. Kipkeew, H. H. Bock, D. Kaschek, C. Kreutz, Jens Timmer

Date Published: 3rd Sep 2016

Journal: PLoS One

Abstract (Expand)

Our understanding of the complex, transcriptional feedback loops in the circadian clock mechanism has depended upon quantitative, timeseries data from disparate sources. We measure clock gene RNA profiles in Arabidopsis thaliana seedlings, grown with or without exogenous sucrose, or in soil-grown plants and in wild-type and mutant backgrounds. The RNA profiles were strikingly robust across the experimental conditions, so current mathematical models are likely to be broadly applicable in leaf tissue. In addition to providing reference data, unexpected behaviours included co-expression of PRR9 and ELF4, and regulation of PRR5 by GI. Absolute RNA quantification revealed low levels of PRR9 transcripts (peak approx. 50 copies cell(-1)) compared with other clock genes, and threefold higher levels of LHY RNA (more than 1500 copies cell(-1)) than of its close relative CCA1. The data are disseminated from BioDare, an online repository for focused timeseries data, which is expected to benefit mechanistic modelling. One data subset successfully constrained clock gene expression in a complex model, using publicly available software on parallel computers, without expert tuning or programming. We outline the empirical and mathematical justification for data aggregation in understanding highly interconnected, dynamic networks such as the clock, and the observed design constraints on the resources required to make this approach widely accessible.

Authors: A. Flis, A. P. Fernandez, T. Zielinski, V. Mengin, R. Sulpice, K. Stratford, A. Hume, A. Pokhilko, M. M. Southern, D. D. Seaton, H. G. McWatters, M. Stitt, K. J. Halliday, Andrew Millar

Date Published: 16th Oct 2015

Journal: Open Biol

Abstract (Expand)

Modeling of dynamical systems using ordinary differential equations is a popular approach in the field of systems biology. Two of the most critical steps in this approach are to construct dynamical models of biochemical reaction networks for large datasets and complex experimental conditions and to perform efficient and reliable parameter estimation for model fitting. We present a modeling environment for MATLAB that pioneers these challenges. The numerically expensive parts of the calculations such as the solving of the differential equations and of the associated sensitivity system are parallelized and automatically compiled into efficient C code. A variety of parameter estimation algorithms as well as frequentist and Bayesian methods for uncertainty analysis have been implemented and used on a range of applications that lead to publications. AVAILABILITY AND IMPLEMENTATION: The Data2Dynamics modeling environment is MATLAB based, open source and freely available at http://www.data2dynamics.org. CONTACT: andreas.raue@fdm.uni-freiburg.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Authors: A. Raue, Bernhard Steiert, M. Schelker, C. Kreutz, T. Maiwald, H. Hass, J. Vanlier, Christian Tönsing, Lorenz Adlung, R. Engesser, W. Mader, T. Heinemann, J. Hasenauer, Marcel Schilling, T. Hofer, E. Klipp, F. Theis, U. Klingmuller, B. Schoberl, J. Timmer

Date Published: 3rd Jul 2015

Journal: Bioinformatics

Abstract (Expand)

Signaling pathways are characterized by crosstalk, feedback and feedforward mechanisms giving rise to highly complex and cell-context specific signaling networks. Dissecting the underlying relations is crucial to predict the impact of targeted perturbations. However, a major challenge in identifying cell-context specific signaling networks is the enormous number of potentially possible interactions. Here, we report a novel hybrid mathematical modeling strategy to systematically unravel hepatocyte growth factor (HGF) stimulated phosphoinositide-3-kinase (PI3K) and mitogen activated protein kinase (MAPK) signaling, which critically contribute to liver regeneration. By combining time-resolved quantitative experimental data generated in primary mouse hepatocytes with interaction graph and ordinary differential equation modeling, we identify and experimentally validate a network structure that represents the experimental data best and indicates specific crosstalk mechanisms. Whereas the identified network is robust against single perturbations, combinatorial inhibition strategies are predicted that result in strong reduction of Akt and ERK activation. Thus, by capitalizing on the advantages of the two modeling approaches, we reduce the high combinatorial complexity and identify cell-context specific signaling networks.

Authors: L. A. D'Alessandro, R. Samaga, T. Maiwald, S. H. Rho, S. Bonefas, A. Raue, N. Iwamoto, A. Kienast, K. Waldow, R. Meyer, Marcel Schilling, J. Timmer, S. Klamt, U. Klingmuller

Date Published: 23rd Apr 2015

Journal: PLoS Comput Biol

Abstract (Expand)

We previously demonstrated that leukemia cell lines expressing CD44 and hematopoietic progenitor cells (HPC) from umbilical cord blood (CB) showed rolling on hyaluronic acid (HA)-coated surfaces under physiological shear stress. In the present study, we quantitatively assessed the interaction of HPC derived from CB, mobilized peripheral blood (mPB) and bone marrow (BM) from healthy donors, as well as primary leukemia blasts from PB and BM of patients with acute myeloid leukemia (AML) with HA. We have demonstrated that HPC derived from healthy donors showed relative homogeneous rolling and adhesion to HA. In contrast, highly diverse behavioral patterns were found for leukemia blasts under identical conditions. The monoclonal CD44 antibody (clone BU52) abrogated the shear stress-induced rolling of HPC and leukemia blasts, confirming the significance of CD44 in this context. On the other hand, the immobile adhesion of leukemia blasts to the HA-coated surface was, in some cases, not or incompletely inhibited by BU52. The latter property was associated with non-responsiveness to induction chemotherapy and subsequently poor clinical outcome.

Authors: M. Hanke, I. Hoffmann, C. Christophis, M. Schubert, V. T. Hoang, A. Zepeda-Moreno, N. Baran, V. Eckstein, P. Wuchter, A. Rosenhahn, A. D. Ho

Date Published: 22nd Nov 2013

Journal: Biomaterials

Abstract (Expand)

In pathogenic trypanosomes, trypanothione synthetase (TryS) catalyzes the synthesis of both glutathionylspermidine (Gsp) and trypanothione [bis(glutathionyl)spermidine, T(SH)2]. Here we present a thorough kinetic analysis of Trypanosoma brucei TryS in a newly developed phosphate buffer system at pH 7.0 and 37 °C, mimicking the physiological environment of the enzyme in the cytosol of bloodstream parasites. Under these conditions, TryS displays Km-values for GSH, ATP, spermidine and Gsp of 34, 18, 687, and 32 μM, respectively, as well as Ki-values for GSH and T(SH)2 of 1 mM and 360 μM, respectively. As Gsp hydrolysis has a Km-value of 5.6 mM, the in vivo amidase activity is probably negligible. To obtain a deeper insight in the molecular mechanism of TryS, we have formulated alternative kinetic models, with elementary reaction steps represented by linear kinetic equations. The model parameters were fitted to the extensive matrix of steady-state data obtained for different substrate/product combinations under the in vivo-like conditions. The best model describes the full kinetic profile and is able to predict time course data that were not used for fitting. This systems biology approach to enzyme kinetics led us to conclude that (i) TryS follows a ter-reactant mechanism, (ii) the intermediate Gsp dissociates from the enzyme between the two catalytic steps and (iii) T(SH)2 inhibits the enzyme by remaining bound at its product site and, as does the inhibitory GSH, by binding to the activated enzyme complex. The newly detected concerted substrate and product inhibition suggests that TryS activity is tightly regulated.

Authors: None

Date Published: 3rd Jul 2013

Journal: J. Biol. Chem.

Abstract (Expand)

Mycoplasma pneumoniae, a threatening pathogen with a minimal genome, is a model organism for bacterial systems biology for which substantial experimental information is available. With the goal of understanding the complex interactions underlying its metabolism, we analyzed and characterized the metabolic network of M. pneumoniae in great detail, integrating data from different omics analyses under a range of conditions into a constraint-based model backbone. Iterating model predictions, hypothesis generation, experimental testing, and model refinement, we accurately curated the network and quantitatively explored the energy metabolism. In contrast to other bacteria, M. pneumoniae uses most of its energy for maintenance tasks instead of growth. We show that in highly linear networks the prediction of flux distributions for different growth times allows analysis of time-dependent changes, albeit using a static model. By performing an in silico knock-out study as well as analyzing flux distributions in single and double mutant phenotypes, we demonstrated that the model accurately represents the metabolism of M. pneumoniae. The experimentally validated model provides a solid basis for understanding its metabolic regulatory mechanisms.

Authors: Judith Wodke, J. Puchalka, M. Lluch-Senar, J. Marcos, Eva Yus, M. Godinho, R. Gutierrez-Gallego, V. A. dos Santos, Luis Serrano, Edda Klipp, T. Maier

Date Published: 4th Apr 2013

Journal: Mol Syst Biol

Abstract (Expand)

We develop a strategic ‘domino’ approach that starts with one key feature of cell function and the main process providing for it, and then adds additional processes and components only as necessary to explain provoked experimental observations. The approach is here applied to the energy metabolism of yeast in a glucose limited chemostat, subjected to a sudden increase in glucose. The puzzles addressed include (i) the lack of increase in ATP upon glucose addition, (ii) the lack of increase in ADP when ATP is hydrolyzed, and (iii) the rapid disappearance of the ‘A’ (adenine) moiety of ATP. Neither the incorporation of nucleotides into new biomass, nor steady de novo synthesis of AMP explains. Cycling of the ‘A’ moiety accelerates when the cell's energy state is endangered, another essential domino among the seven required for understanding of the experimental observations. This new domino analysis shows how strategic experimental design and observations in tandem with theory and modeling may identify and resolve important paradoxes. It also highlights the hitherto unexpected role of the ‘A’ component of ATP.

Authors: None

Date Published: 1st Sep 2012

Journal: Biochimica et Biophysica Acta (BBA) - Bioenergetics

Abstract (Expand)

Kinetic models of metabolism require detailed knowledge of kinetic parameters. However, due to measurement errors or lack of data this knowledge is often uncertain. The model of glycolysis in the parasitic protozoan Trypanosoma brucei is a particularly well analysed example of a quantitative metabolic model, but so far it has been studied with a fixed set of parameters only. Here we evaluate the effect of parameter uncertainty. In order to define probability distributions for each parameter, information about the experimental sources and confidence intervals for all parameters were collected. We created a wiki-based website dedicated to the detailed documentation of this information: the SilicoTryp wiki (http://silicotryp.ibls.gla.ac.uk/wiki/Gl​ycolysis). Using information collected in the wiki, we then assigned probability distributions to all parameters of the model. This allowed us to sample sets of alternative models, accurately representing our degree of uncertainty. Some properties of the model, such as the repartition of the glycolytic flux between the glycerol and pyruvate producing branches, are robust to these uncertainties. However, our analysis also allowed us to identify fragilities of the model leading to the accumulation of 3-phosphoglycerate and/or pyruvate. The analysis of the control coefficients revealed the importance of taking into account the uncertainties about the parameters, as the ranking of the reactions can be greatly affected. This work will now form the basis for a comprehensive Bayesian analysis and extension of the model considering alternative topologies.

Authors: None

Date Published: 19th Jan 2012

Journal: PLoS Comput Biol

Abstract (Expand)

The RNA degradosome is a multiprotein macromolecular complex that is involved in the degradation of messenger RNA in bacteria. The composition of this complex has been found to display a high degree of evolutionary divergence, which may reflect the adaptation of species to different environments. Recently, a degradosome-like complex identified in Bacillus subtilis was found to be distinct from those found in proteobacteria, the degradosomes of which are assembled around the unstructured C-terminus of ribonuclease E, a protein not present in B. subtilis. In this report, we have investigated in vitro the binary interactions between degradosome components and have characterized interactions between glycolytic enzymes, RNA-degrading enzymes, and those that appear to link these two cellular processes. The crystal structures of the glycolytic enzymes phosphofructokinase and enolase are presented and discussed in relation to their roles in the mediation of complex protein assemblies. Taken together, these data provide valuable insights into the structure and dynamics of the RNA degradosome, a fascinating and complex macromolecular assembly that links RNA degradation with central carbon metabolism.

Authors: Joseph Newman, Lorraine Hewitt, Cecilia Rodrigues, Alexandra S Solovyova, Colin Harwood, Rick Lewis

Date Published: 16th Dec 2011

Journal: J. Mol. Biol.

Abstract (Expand)

Cellular signal transduction is governed by multiple feedback mechanisms to elicit robust cellular decisions. The specific contributions of individual feedback regulators, however, remain unclear. Based on extensive time-resolved data sets in primary erythroid progenitor cells, we established a dynamic pathway model to dissect the roles of the two transcriptional negative feedback regulators of the suppressor of cytokine signaling (SOCS) family, CIS and SOCS3, in JAK2/STAT5 signaling. Facilitated by the model, we calculated the STAT5 response for experimentally unobservable Epo concentrations and provide a quantitative link between cell survival and the integrated response of STAT5 in the nucleus. Model predictions show that the two feedbacks CIS and SOCS3 are most effective at different ligand concentration ranges due to their distinct inhibitory mechanisms. This divided function of dual feedback regulation enables control of STAT5 responses for Epo concentrations that can vary 1000-fold in vivo. Our modeling approach reveals dose-dependent feedback control as key property to regulate STAT5-mediated survival decisions over a broad range of ligand concentrations.

Authors: J. Bachmann, A. Raue, Marcel Schilling, Martin Böhm, C. Kreutz, D. Kaschek, H. Busch, N. Gretz, W. D. Lehmann, Jens Timmer, Ursula Klingmüller

Date Published: 2011

Journal: Molecular Systems Biology

Abstract (Expand)

The topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of ‘design’ aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic models of increasing complexity, calculations show how these features correspond to potentially important design principles, e.g.: (i) cytosolic ‘nuclear’ receptor may shuttle signal molecules to the nucleus, (ii) the active export of NRs may ensure that there is sufficient receptor protein to capture ligand at the cytoplasmic membrane, (iii) a three conveyor belts design dissipating GTP-free energy, greatly aids response, (iv) the active export of importins may prevent sequestration of NRs by importins in the nucleus and (v) the unspecific nature of the nuclear pore may ensure signal-flux robustness. In addition, the models developed are suitable for implementation in specific cases of NR-mediated signaling, to predict individual receptor functions and differential sensitivity toward physiological and pharmacological ligands.

Authors: Alexey N Kolodkin, Frank J Bruggeman, Nick Plant, Martijn J Moné, Barbara M Bakker, Moray J Campbell, Johannes P T M van Leeuwen, Carsten Carlberg, Jacky Snoep, Hans V Westerhoff

Date Published: 21st Dec 2010

Journal: Mol Syst Biol

Abstract (Expand)

Mutations in DNA replication initiator genes in both prokaryotes and eukaryotes lead to a pleiotropic array of phenotypes, including defects in chromosome segregation, cytokinesis, cell cycle regulation and gene expression. For years, it was not clear whether these diverse effects were indirect consequences of perturbed DNA replication, or whether they indicated that DNA replication initiator proteins had roles beyond their activity in initiating DNA synthesis. Recent work from a range of organisms has demonstrated that DNA replication initiator proteins play direct roles in many cellular processes, often functioning to coordinate the initiation of DNA replication with essential cell-cycle activities. The aim of this review is to highlight these new findings, focusing on the pathways and mechanisms utilized by DNA replication initiator proteins to carry out a diverse array of cellular functions.

Authors: Graham Scholefield, Jan-Willem Veening, Heath Murray

Date Published: 27th Aug 2010

Journal: Trends Cell Biol.

Abstract (Expand)

Glutathione constitutes a key player in the thiol redox buffer in many organisms. However, the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus lack this low-molecular-weight thiol. Recently, we identified S-cysteinylated proteins in B. subtilis after treatment of cells with the disulfide-generating electrophile diamide. S cysteinylation is thought to protect protein thiols against irreversible oxidation to sulfinic and sulfonic acids. Here we show that S thiolation occurs also in S. aureus proteins after exposure to diamide. We further analyzed the formation of inter- and intramolecular disulfide bonds in cytoplasmic proteins using diagonal nonreducing/reducing sodium dodecyl sulfate gel electrophoresis. However, only a few proteins were identified that form inter- or intramolecular disulfide bonds under control and diamide stress conditions in B. subtilis and S. aureus. Depletion of the cysteine pool was concomitantly measured in B. subtilis using a metabolomics approach. Thus, the majority of reversible thiol modifications that were previously detected by two-dimensional gel fluorescence-based thiol modification assay are most likely based on S thiolations. Finally, we found that a glutathione-producing B. subtilis strain which expresses the Listeria monocytogenes gshF gene did not show enhanced oxidative stress resistance compared to the wild type.

Authors: Dierk-Christoph Pöther, Manuel Liebeke, Falko Hochgräfe, Haike Antelmann, Dörte Becher, Michael Lalk, Ulrike Lindequist, Ilya Borovok, Gerald Cohen, Yair Aharonowitz, Michael Hecker

Date Published: 16th Oct 2009

Journal: J. Bacteriol.

Abstract (Expand)

SUMMARY: Quinones are highly toxic naturally occurring thiol-reactive compounds. We have previously described novel pathways for quinone detoxification in the Gram-positive bacterium Bacillus subtilis. In this study, we have investigated the extent of irreversible and reversible thiol modifications caused in vivo by electrophilic quinones. Exposure to toxic benzoquinone (BQ) concentrations leads to depletion of numerous Cys-rich cytoplasmic proteins in the proteome of B. subtilis. Mass spectrometry and immunoblot analyses demonstrated that these BQ-depleted proteins represent irreversibly damaged BQ aggregates that escape the two-dimensional gel separation. This enabled us to quantify the depletion of thiol-containing proteins which are the in vivo targets for thiol-(S)-alkylation by toxic quinone compounds. Metabolomic approaches confirmed that protein depletion is accompanied by depletion of the low-molecular-weight (LMW) thiol cysteine. Finally, no increased formation of disulphide bonds was detected in the thiol-redox proteome in response to sublethal quinone concentrations. The glyceraldehyde-3-phosphate dehydrogenase (GapA) was identified as the only new target for reversible thiol modifications after exposure to toxic quinones. Together our data show that the thiol-(S)-alkylation reaction with protein and non-protein thiols is the in vivo mechanism for thiol depletion and quinone toxicity in B. subtilis and most likely also in other bacteria.

Authors: Manuel Liebeke, Dierk-Christoph Pöther, Nguyen van Duy, Dirk Albrecht, Dörte Becher, Falko Hochgräfe, Michael Lalk, Michael Hecker, Haike Antelmann

Date Published: 30th Jul 2008

Journal: Mol. Microbiol.

Abstract (Expand)

Background Signalling pathways are complex systems in which not only simple monomeric molecules interact, but also more complex structures that include constitutive or induced protein assemblies. In particular, the hetero-and homo-dimerisation of proteins is a commonly encountered motif in signalling pathways. Several authors have suggested in recent times that dimerisation relates to a series of physical and biological outcomes used by the cell in the regulation of signal transduction. Results In this paper we investigate the role of homodimerisation in receptor-protein transducer interactions. Towards this end, mathematical modelling is used to analyse the features of such kind of interactions and to predict the behaviour of the system under different experimental conditions. A kinetic model in which the interaction between homodimers provokes a dual mechanism of activation (single and double protein transducer activation at the same time) is proposed. In addition, we analyse under which conditions the use of a power-law representation for the system is useful. Furthermore, we investigate the dynamical consequences of this dual mechanism and compare the performance of the system in different simulated experimental conditions. Conclusion The analysis of our mathematical model suggests that in receptor-protein interacting systems with dual mechanism there may be a shift between double and single activation in a way that intense double protein transducer activation could initiate and dominate the signal in the short term (getting a fast intense signal), while single protein activation could control the system in the medium and long term (when input signal is weaker and decreases slowly). Our investigation suggests that homodimerisation and oligomerisation are mechanisms used to enhance and regulate the dynamic properties of the initial steps in signalling pathways.

Authors: Julio Vera, Thomas Millat, Walter Kolch, Olaf Wolkenhauer

Date Published: 2008

Journal: BMC Syst Biol

Abstract

Not specified

Authors: A. Schmoldt, H. F. Benthe, G. Haberland

Date Published: 1st Sep 1975

Journal: Biochem Pharmacol

Abstract (Expand)

BACKGROUND: Unicellular cyanobacteria of the genus Cyanothece are recognized for their ability to execute nitrogen (N2)-fixation in the dark and photosynthesis in the light. An understanding of these mechanistic processes in an integrated systems context should provide insights into how Cyanothece might be optimized for specialized environments and/or industrial purposes. Systems-wide dynamic proteomic profiling with mass spectrometry (MS) analysis should reveal fundamental insights into the control and regulation of these functions. RESULTS: To expand upon the current knowledge of protein expression patterns in Cyanothece ATCC51142, we performed quantitative proteomic analysis using partial ("unsaturated") metabolic labeling and high mass accuracy LC-MS analysis. This dynamic proteomic profiling identified 721 actively synthesized proteins with significant temporal changes in expression throughout the light-dark cycles, of which 425 proteins matched with previously characterized cycling transcripts. The remaining 296 proteins contained a cluster of proteins uniquely involved in DNA replication and repair, protein degradation, tRNA synthesis and modification, transport and binding, and regulatory functions. Functional classification of labeled proteins suggested that proteins involved in respiration and glycogen metabolism showed increased expression in the dark cycle together with nitrogenase, suggesting that N2-fixation is mediated by higher respiration and glycogen metabolism. Results indicated that Cyanothece ATCC51142 might utilize alternative pathways for carbon (C) and nitrogen (N) acquisition, particularly, aspartic acid and glutamate as substrates of C and N, respectively. Utilization of phosphoketolase (PHK) pathway for the conversion of xylulose-5P to pyruvate and acetyl-P likely constitutes an alternative strategy to compensate higher ATP and NADPH demand. CONCLUSION: This study provides a deeper systems level insight into how Cyanothece ATCC51142 modulates cellular functions to accommodate photosynthesis and N2-fixation within the single cell.

Authors: U. K. Aryal, J. Stockel, R. K. Krovvidi, M. A. Gritsenko, M. E. Monroe, R. J. Moore, D. W. Koppenaal, R. D. Smith, H. B. Pakrasi, J. M. Jacobs

Date Published: No date defined

Journal: BMC Syst Biol

Abstract (Expand)

Thraustochytrids are unicellular, marine protists, and there is a growing industrial interest in these organisms, particularly because some species, including strains belonging to the genus Aurantiochytrium, accumulate high levels of docosahexaenoic acid (DHA). Here, we report the draft genome sequence of Aurantiochytrium sp. T66 (ATCC PRA-276), with a size of 43 Mbp, and 11,683 predicted protein-coding sequences. The data has been deposited at DDBJ/EMBL/Genbank under the accession LNGJ00000000. The genome sequence will contribute new insight into DHA biosynthesis and regulation, providing a basis for metabolic engineering of thraustochytrids.

Authors: B. Liu, H. Ertesvag, I. M. Aasen, O. Vadstein, T. Brautaset, T. M. Heggeset

Date Published: No date defined

Journal: Genom Data

Powered by
(v.1.9.0)
Copyright © 2008 - 2019 The University of Manchester and HITS gGmbH