SEEK ID: https://fairdomhub.org/people/1364
Location:
Netherlands
ORCID:
https://orcid.org/0000-0003-2199-5070
Joined: 25th May 2019
Expertise: Not specified
Tools: Not specified
Related items
- Projects (1)
- Institutions (1)
- Investigations (1)
- Studies (4)
- Assays (13)
- Data files (16+4)
- Models (6)
- SOPs (1+1)
- Publications (3)
- Presentations (0+15)
- Documents (20+2)
PoLiMeR is funded through the EU Marie Skłodowska-Curie Innovative Training Network (ITN), which drives scientific excellence and innovation. ITNs bring together universities, research institutes, industry and clinical partners from across the world to train researchers to doctorate level.
Metabolic diseases are a burden on the European population and health care system. It is increasingly recognised that individual differences with respect to history, lifestyle, and genetic make-up affect disease ...
Programme: This Project is not associated with a Programme
Public web page: http://polimer-itn.eu/
Organisms: Homo sapiens, Mus musculus, Rattus norvegicus
Submitter: Christoff Odendaal
Studies: Model analysis, Model construction, Model validation, Sequestration of CoA and adaptation of CoA metabolism in MCAD-knockout c...
Assays: ACAD activity partitioning, Comparing acyl-CoA dehydrogenase deficiencies, Computational model (in silico), HepG2 cells (in vitro), HepG2 oxygen consumption, Kinetics Minireviews, MCADD patient personalised modelling, MCADD rescue titration, Metabolic control analysis, Mice (in vivo), Models, Predicting urinary acylcarnitines under metabolic decompensation., Whole-body ketogenic flux
Snapshots: Snapshot 1
Following on in silico and in vitro work, the effect of MCAD deficiency on CoA metabolism was investigated. Using a recently published HILIC-MS/MS method, free and acylated CoA species could be measured simultaneously in HepG2 MCAD-KO cells. The levels of CoA biosynthesis intermediates and total CoA was also characterised by HPLC in liver samples from MCAD-KO mice exposed to energetic stress (fasting adn cold). qPCR was applied to investigate changes in the CoA metabolism that might constitute ...
Submitter: Christoff Odendaal
Investigation: Mitochondrial fatty acid oxidation in human liver
Assays: Computational model (in silico), HepG2 cells (in vitro), Mice (in vivo)
Snapshots: Snapshot 1
Submitter: Christoff Odendaal
Investigation: Mitochondrial fatty acid oxidation in human liver
Assays: Kinetics Minireviews, Models
Snapshots: No snapshots
Submitter: Christoff Odendaal
Investigation: Mitochondrial fatty acid oxidation in human liver
Assays: ACAD activity partitioning, HepG2 oxygen consumption, Whole-body ketogenic flux
Snapshots: No snapshots
Submitter: Christoff Odendaal
Investigation: Mitochondrial fatty acid oxidation in human liver
Assays: Comparing acyl-CoA dehydrogenase deficiencies, MCADD patient personalised modelling, MCADD rescue titration, Metabolic control analysis, Predicting urinary acylcarnitines under metabolic decompensation.
Snapshots: No snapshots
Submitter: Christoff Odendaal
Biological problem addressed: Model Analysis Type
Investigation: Mitochondrial fatty acid oxidation in human liver
Study: Model construction
Organisms: No organisms
Models: Model notebooks, odendaal1, odendaal2, odendaal3
SOPs: Parameter Search SOP
Data files: No Data files
Snapshots: No snapshots
Validation of model's ability to predict oxygen consumption flux as measured usign permeabilised cells in an Oroboros Oxygraph. Generates Fig. 2A in the associated publication.
Download "Model_notebooks.rar", unzip, and run: "2, generate-model-Oroboros-validation-[needs(1)]-20221109.nb" and "4, Fig2A-Oroboros-simulation-data-[needs-(1-2-and-3)]-20221109.nb" after running "1, generate-model-20221109.nb"
Submitter: Christoff Odendaal
Biological problem addressed: Validation
Investigation: Mitochondrial fatty acid oxidation in human liver
Study: Model validation
Organisms: Homo sapiens
Models: Model notebooks, odendaal2
SOPs: No SOPs
Data files: HepG2 protein concentration for O2 consumption ..., Oxygen concentration and consumption flux in pe...
Snapshots: No snapshots
Validation of model's ability to predict whole-body ketogeneic flux as extracted form Fletcher et al. (2019). Generates Fig. 2B in the associated publication.
Download "Model_notebooks.rar", unzip, and run: "2, generate-model-Oroboros-validation-[needs(1)]-20221109.nb" and "5, Fig2B-ketogenesis-validation-[needs-(1)]-20221109.nb" after running "1, generate-model-20221109.nb"
Submitter: Christoff Odendaal
Biological problem addressed: Validation
Investigation: Mitochondrial fatty acid oxidation in human liver
Study: Model validation
Organisms: No organisms
Models: Model notebooks, odendaal1
SOPs: No SOPs
Data files: No Data files
Snapshots: No snapshots
Testing the model's ability to predict palmitoyl-CoA and octanoyl-CoA dehydrogenation in human liver lysate, with and without anti-MCAD and anti-VLCAD antibodies. Generates Fig. 2 C and D in the associated publication. Data from Aoyama et al. (1995).
Downoad and unzip "Model_notebooks.rar" and run "6, Fig2C+D-ACAD-partitioning-validation-[needs-(1)]-20221109.nb" after running "1, generate-model-20221109.nb".
Submitter: Christoff Odendaal
Biological problem addressed: Validation
Investigation: Mitochondrial fatty acid oxidation in human liver
Study: Model validation
Organisms: No organisms
Models: Model notebooks, odendaal3
SOPs: No SOPs
Data files: No Data files
Snapshots: No snapshots
Minireviews about each enzyme in the mitochindrial beta-oxidation model on which the final parameter choices (fixed-parameter model) and parameter sampling distributions (ensemble) were based.
Submitter: Christoff Odendaal
Biological problem addressed: Model Analysis Type
Investigation: Mitochondrial fatty acid oxidation in human liver
Study: Model construction
Organisms: No organisms
Models: No Models
SOPs: Parameter Search SOP
Data files: No Data files
Snapshots: Snapshot 1
Submitter: Christoff Odendaal
Biological problem addressed: Model Analysis Type
Investigation: Mitochondrial fatty acid oxidation in human liver
Organisms: No organisms
Models: Model notebooks, odendaal4
SOPs: No SOPs
Data files: No Data files
Snapshots: No snapshots
The behaviour of a published MCAD-KO HepG2 cell line was compared to that of a wild-type HepG2 cell line in terms of the changes in acyl-CoA and acylcarnitine levels (measured by HILIC-MS/MS) and gene expression pertaining to CoA metabolism (characterised by qPCR). Additionally, the incorporation of label from stable isotope-labelled pantothenate (vitamine B5) was over 24 hours of exposure to an energetic stressor was also investigated.
Submitter: Christoff Odendaal
Assay type: Experimental Assay Type
Technology type: Technology Type
Investigation: Mitochondrial fatty acid oxidation in human liver
Organisms: Homo sapiens (batch)
SOPs: No SOPs
Data files: HepG2 CoA labelling data, palmitate/no-glucose ..., HepG2 acyl-CoA measurements, palmitate/low-gluc..., HepG2 acyl-CoA measurements, palmitate/no-gluco..., HepG2 acyl-CoA/acylcarnitine measurements stati..., HepG2 acyl-CoA/acylcarnitine measurements stati..., HepG2 acylcarnitine measurements, palmitate/low..., HepG2 acylcarnitine measurements, palmitate/no-..., HepG2 qPCR statistical significance, palmitate/..., HepG2 qPCR statistical significance, palmitate/..., HepG2 qPCR, palmitate/low-glucose (Fig. S11), HepG2 qPCR, palmitate/no-glucose (Fig. S9)
Snapshots: No snapshots
MCAD-KO mice (C57BL/6J background) were exposed to three different conditions: "fed", "fasting", and "fasting + cold". In this study we determined the concentration of various CoA biosynthetic intermediates (including CoA) and the expression of CoA metabolic genes in liver tissue samples from these groups of mice.
Submitter: Christoff Odendaal
Assay type: Experimental Assay Type
Technology type: Technology Type
Investigation: Mitochondrial fatty acid oxidation in human liver
Organisms: No organisms
SOPs: No SOPs
Data files: Mice CoA biosynthetic intermediates (Fig. 4C), Mice qPCR (Fig. 4E-F)
Snapshots: No snapshots
Prediction of patient urinary acylcarnitine under metabolic decompensation. Generates Fig. 3, Table 1, and Table S2 in the associated publication.
Download and unzip "Model_notebooks.rar" and run "7, Fig3+4+S1+S3-ACADDs-[needs-(1)]-20221109.nb" after running "1, generate-model-20221109.nb"
Submitter: Christoff Odendaal
Biological problem addressed: Model Analysis Type
Investigation: Mitochondrial fatty acid oxidation in human liver
Study: Model analysis
Organisms: No organisms
Models: Model notebooks, odendaal1
SOPs: No SOPs
Data files: No Data files
Snapshots: No snapshots
Based on odendaal1, a control model is made and compared to model deficient for short-chain acyl-CoA dehydrogenase (SCADD, 0%), medium-chain acyl-CoA dehydrogenase (MCADD, 0%), and very long-chain acyl-CoA dehydrogenase (VLCADD, 10%). With and withou metabolite partitioning, and with a fixed mitohondrial free CoASH. Generates Figures 3, 4, S1, S2, and S3 in the related paper.
Download "Model_notebooks.rar", unzip, and run: "7, Fig3+4+S1+S3-ACADDs-[needs-(1)]-20221109.nb" and "14, ...
Submitter: Christoff Odendaal
Biological problem addressed: Model Analysis Type
Investigation: Mitochondrial fatty acid oxidation in human liver
Study: Model analysis
Organisms: No organisms
Models: Model notebooks, odendaal1
SOPs: No SOPs
Data files: No Data files
Snapshots: No snapshots
Calculation of control and response coefficients. Generates Fig. 5, Fig. S4, and Table S2 in the associated publication.
Download "Model_notebooks.rar", unzip, and run: "8, Fig5-control-coefficients-[needs-(1)]-20221109.nb", "9, TableS2-response-coefficients-[needs-(1)]-20230302.nb", and "15, FigS4-control-coefficients-low-AcetylCoA-[needs-(1)]-20221109.nb" after running "1, generate-model-20221109.nb"
Submitter: Christoff Odendaal
Biological problem addressed: Model Analysis Type
Investigation: Mitochondrial fatty acid oxidation in human liver
Study: Model analysis
Organisms: No organisms
Models: Model notebooks, odendaal1
SOPs: No SOPs
Data files: No Data files
Snapshots: No snapshots
Incrementally increase the activity of some target rescue enzymes from 20% of default expression to 200% of default expression in a control and MCADD model to see if flux and CoASH concentration are rescued. Generates Fig. 6, S5, and S6.
Download "Model_notebooks.rar", unzip, and run "11, Fig6+S5-rescues-[needs-(1-and-10)]-20221109.nb", "10, Fig6B-inset-rescues-(low-acetylCoA)-[needs-(1)]-20221109.nb", and "16, FigS6-rescues-20221109-fixed-[needs-(1)]-CoASH.nb" after running "1, generate-model-20221109.nb" ...
Submitter: Christoff Odendaal
Biological problem addressed: Model Analysis Type
Investigation: Mitochondrial fatty acid oxidation in human liver
Study: Model analysis
Organisms: No organisms
Models: Model notebooks, odendaal1
SOPs: No SOPs
Data files: No Data files
Snapshots: No snapshots
Creation of personalised models of control, symptomatic MCADD, asymptomatic MCADD, and early diagnosis MCADD individuals using fibroblast proteomics to adjust model Vmaxes. Generates Fig. 7 and S7.
Download and unzip "Model_notebooks.rar" and run "13, Fig7-personalised-models-[needs-(1-and-12)]-20221109.nb" after running "1, generate-model-20221109.nb" and "12, Fig7-S7-preprocessing-[needs-(1)-]-20221109.nb".
Submitter: Christoff Odendaal
Biological problem addressed: Model Analysis Type
Investigation: Mitochondrial fatty acid oxidation in human liver
Study: Model analysis
Organisms: No organisms
Models: Model notebooks, odendaal1
SOPs: No SOPs
Data files: Fibroblasts proteomics
Snapshots: No snapshots
Creator: Christoff Odendaal
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Sequestration of CoA and adaptation of CoA meta...
Assays: HepG2 cells (in vitro)
Creator: Christoff Odendaal
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Sequestration of CoA and adaptation of CoA meta...
Assays: Mice (in vivo)
The expression of various genes related to the CoA metabolism as measured by qPCR.
Creator: Christoff Odendaal
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Sequestration of CoA and adaptation of CoA meta...
Assays: Mice (in vivo)
Creator: Christoff Odendaal
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Sequestration of CoA and adaptation of CoA meta...
Assays: HepG2 cells (in vitro)
Creator: Christoff Odendaal
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Sequestration of CoA and adaptation of CoA meta...
Assays: HepG2 cells (in vitro)
Creator: Christoff Odendaal
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Sequestration of CoA and adaptation of CoA meta...
Assays: HepG2 cells (in vitro)
Creator: Christoff Odendaal
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Sequestration of CoA and adaptation of CoA meta...
Assays: HepG2 cells (in vitro)
Creator: Christoff Odendaal
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Sequestration of CoA and adaptation of CoA meta...
Assays: HepG2 cells (in vitro)
Creator: Christoff Odendaal
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Sequestration of CoA and adaptation of CoA meta...
Assays: HepG2 cells (in vitro)
Creator: Christoff Odendaal
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Sequestration of CoA and adaptation of CoA meta...
Assays: HepG2 cells (in vitro)
Incorporation of stable isotope from pantothenate into total and free CoA pools.
Creator: Christoff Odendaal
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Sequestration of CoA and adaptation of CoA meta...
Assays: HepG2 cells (in vitro)
Creator: Christoff Odendaal
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Sequestration of CoA and adaptation of CoA meta...
Assays: HepG2 cells (in vitro)
Creator: Christoff Odendaal
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Sequestration of CoA and adaptation of CoA meta...
Assays: HepG2 cells (in vitro)
Protein measurement used to normalised the oxygen consumption flux measured on an Oroboros oxygraph.
Creators: Christoff Odendaal, Barbara Bakker, Ligia Akemi Kiyuna, Albert Gerding; Nicolette Huijkman; Marcel Vieira-Lara; Anne-Claire Martines
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model validation
Assays: HepG2 oxygen consumption
Measured in an Oroboros oxygraph.
Creators: Christoff Odendaal, Barbara Bakker, Ligia Akemi Kiyuna, Albert Gerding; Nicolette Huijkman; Marcel Vieira-Lara; Anne-Claire Martines
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model validation
Assays: HepG2 oxygen consumption
Proteomics from MCADD and control individuals' fibroblasts.
Creators: Christoff Odendaal, Barbara Bakker, Emmalie Jager, Terry G.J. Derks, Karin Wolters; Anne-Claire Martines
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model analysis
Unzip model notebooks and keep in the same folder. Notebook "0, generate_model.nb" needs to be run before the others can be, as the model needs to be exported as Excel files before they cvan be used to make the figures.
Creators: Christoff Odendaal, Barbara Bakker
Submitter: Christoff Odendaal
Model type: Ordinary differential equations (ODE)
Model format: Mathematica
Environment: JWS Online
Organism: Homo sapiens
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Sequestration of CoA and adaptation of CoA meta...
Assays: Computational model (in silico)
Creators: Christoff Odendaal, Ligia Akemi Kiyuna, Madhulika Singh, Barbara Bakker, Amy HARMS, Thomas Hankemeier
Submitter: Christoff Odendaal
Model type: Not specified
Model format: Not specified
Environment: Not specified
Organism: Not specified
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Sequestration of CoA and adaptation of CoA meta...
Assays: Computational model (in silico)
Adjusted model to test the model's ability to oxygen consumption rate by permeabilised HepG2 cells in an Oroboros oxygraph. Data from Fletcher et al. (2019).
Creators: Christoff Odendaal, Emmalie Jager, Terry G.J. Derks, Barbara Bakker
Submitter: Christoff Odendaal
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
Organism: Homo sapiens
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model construction, Model validation
Assays: HepG2 oxygen consumption, Models
Adjusted model to test the model's ability to predict palmitoyl-CoA and octanoyl-CoA dehydrogenation in human liver lysate, with and without anti-MCAD and anti-VLCAD antibodies. Data from Aoyama et al. (1995).
Creators: Christoff Odendaal, Barbara Bakker, Emmalie Jager, Terry G.J. Derks
Submitter: Christoff Odendaal
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
Organism: Homo sapiens
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model construction, Model validation
Assays: ACAD activity partitioning, Models
Human mitochondrial fatty acid oxidation of saturated, even chain acyl-Coas beginning at C16. See Model description for detail.
Creators: Christoff Odendaal, Emmalie Jager, Barbara Bakker, Terry G.J. Derks
Submitter: Christoff Odendaal
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
Organism: Not specified
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model analysis, Model construction, Model validation
Assays: Comparing acyl-CoA dehydrogenase deficiencies, MCADD patient personalised modelling, MCADD rescue titration, Metabolic control analysis, Models, Predicting urinary acylcarnitines under metabol..., Whole-body ketogenic flux
Unzip model notebooks and keep in the same folder. Notebook names state which notebooks need to be run before them in order for them to word, e.g. "[needs-(1)]" indicates that the notebook numbered 1 must be run and its exported output generated before the given notebook can work. This has to do with the model being generated in only one notebook to avoid duplication.
Creators: Christoff Odendaal, Barbara Bakker, Emmalie Jager, Terry G.J. Derks
Submitter: Christoff Odendaal
Model type: Ordinary differential equations (ODE)
Model format: Mathematica
Environment: Mathematica
Organism: Homo sapiens
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model analysis, Model construction, Model validation
Assays: ACAD activity partitioning, Comparing acyl-CoA dehydrogenase deficiencies, HepG2 oxygen consumption, MCADD patient personalised modelling, MCADD rescue titration, Metabolic control analysis, Models, Predicting urinary acylcarnitines under metabol..., Whole-body ketogenic flux
Creators: Christoff Odendaal, Barbara Bakker
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model construction
Assays: Kinetics Minireviews, Models
Abstract (Expand)
Authors: Madhulika Singh, Ligia Akemi Kiyuna, Christoff Odendaal, Barbara M. Bakker, Amy C Harms, Thomas Hankemeier
Date Published: 11th Sep 2023
Publication Type: Journal
DOI: 10.26434/chemrxiv-2023-h0w52
Citation: [Preprint]
Abstract (Expand)
Authors: C. Odendaal, E. A. Jager, A. M. F. Martines, M. A. Vieira-Lara, N. C. A. Huijkman, L. A. Kiyuna, A. Gerding, J. C. Wolters, R. Heiner-Fokkema, K. van Eunen, T. G. J. Derks, B. M. Bakker
Date Published: 4th Sep 2023
Publication Type: Journal
PubMed ID: 37667308
Citation: BMC Biol. 2023 Sep 4;21(1):184. doi: 10.1186/s12915-023-01652-9.
Abstract
Authors: Theresa Kouril, Craig October, Stephanie Hollocks, Christoff Odendaal, David D. van Niekerk, Jacky L. Snoep
Date Published: 1st Sep 2023
Publication Type: Journal
DOI: 10.1016/j.biosystems.2023.104969
Citation: Biosystems 231:104969
Medium-/short-chain hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35)
Creators: Christoff Odendaal, Barbara Bakker, Fentaw Abegaz
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model construction
Assays: Kinetics Minireviews
Medium-chain ketoacyl-CoA thiolase (EC 2.3.1.16)
Creators: Christoff Odendaal, Barbara Bakker, Jose Manuel Horcas Nieto
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model construction
Assays: Kinetics Minireviews
Mitochondrial trifunctional protein (UniProt: P40939)
Creators: Christoff Odendaal, Barbara Bakker, Jose Manuel Horcas Nieto
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model construction
Assays: Kinetics Minireviews
Acyl-CoA thioesterases (EC 3.1.2.1. and EC 3.1.2.2)
Creators: Christoff Odendaal, Barbara Bakker, Marcel A. Vieira Lara
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model construction
Assays: Kinetics Minireviews
L-carnitine as conserved moiety
Creators: Christoff Odendaal, Barbara Bakker, Ligia Akemi Kiyuna
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model construction
Assays: Kinetics Minireviews
CoA as conserved moiety
Creators: Christoff Odendaal, Barbara Bakker, Ligia Akemi Kiyuna
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model construction
Assays: Kinetics Minireviews
Acetyl-CoA in the mitochondrion as constant metabolite
Creators: Christoff Odendaal, Barbara Bakker, Ligia Akemi Kiyuna
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model construction
Assays: Kinetics Minireviews
NADH and NAD+ (Nicotinamide adinine dinucleotide) as constant values.
Creators: Christoff Odendaal, Ligia Akemi Kiyuna, Barbara Bakker
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model construction
Assays: Kinetics Minireviews
Oxidised and reduced electron transferring flavoprotein as constant values.
Creators: Christoff Odendaal, Barbara Bakker, Ligia Akemi Kiyuna
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model construction
Assays: Kinetics Minireviews
Volume per mg mitochondrial protein of mitochondrion and cytosol.
Creators: Christoff Odendaal, Barbara Bakker, Ligia Akemi Kiyuna
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model construction
Assays: Kinetics Minireviews
Carnitine palmitoyltransferase 1 (EC 2.3.1.21)
Creators: Christoff Odendaal, Barbara Bakker, Karen van Eunen
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model construction
Assays: Kinetics Minireviews
The theory, calculations, and conditions that went into estimating the Keqs.
Creators: Christoff Odendaal, Barbara Bakker
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model construction
Assays: Kinetics Minireviews
Carnitine acylcarnitine translocase (UniProt: O43772)
Creators: Christoff Odendaal, Barbara Bakker
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model construction
Assays: Kinetics Minireviews
Carnitine palmitoyltransferase 2 (EC 2.3.1.21)
Creators: Christoff Odendaal, Emmalie Jager, Barbara Bakker
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model construction
Assays: Kinetics Minireviews
Carnitine acetyltransferase (EC 2.3.1.7)
Creators: Christoff Odendaal, Barbara Bakker, Marcel A. Vieira Lara
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model construction
Assays: Kinetics Minireviews
Short-chain acyl-CoA dehydrogenase (EC 1.3.99.2)
Creators: Christoff Odendaal, Emmalie Jager, Barbara Bakker
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model construction
Assays: Kinetics Minireviews
Medium-chain acyl-CoA dehydrogenase (EC 1.3.99.3)
Creators: Christoff Odendaal, Barbara Bakker, Ligia Akemi Kiyuna
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model construction
Assays: Kinetics Minireviews
Very long-chain acyl-CoA dehydrogenase (EC 1.3.8.9)
Creators: Christoff Odendaal, Barbara Bakker, Karen van Eunen
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model construction
Assays: Kinetics Minireviews
Crotonase / Enoyl-CoA hydratase (EC 4.2.1.17)
Creators: Christoff Odendaal, Barbara Bakker, Fentaw Abegaz
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model construction
Assays: Kinetics Minireviews
A short description of the experiments conducted to decide on HepG2 cells as the appropriate line for the generation of an MCAD knockout. IHH, Hep3B, HepG2, and HUH-7 cells were all consdered.
Creators: Christoff Odendaal, Barbara Bakker, Terry G.J. Derks, Ligia Akemi Kiyuna, Emmalie Jager
Submitter: Christoff Odendaal
Investigations: Mitochondrial fatty acid oxidation in human liver
Studies: Model validation
Assays: HepG2 oxygen consumption