Dynamics of receptor and protein transducer homodimerisation

Abstract:

Background Signalling pathways are complex systems in which not only simple monomeric molecules interact, but also more complex structures that include constitutive or induced protein assemblies. In particular, the hetero-and homo-dimerisation of proteins is a commonly encountered motif in signalling pathways. Several authors have suggested in recent times that dimerisation relates to a series of physical and biological outcomes used by the cell in the regulation of signal transduction.

Results In this paper we investigate the role of homodimerisation in receptor-protein transducer interactions. Towards this end, mathematical modelling is used to analyse the features of such kind of interactions and to predict the behaviour of the system under different experimental conditions. A kinetic model in which the interaction between homodimers provokes a dual mechanism of activation (single and double protein transducer activation at the same time) is proposed. In addition, we analyse under which conditions the use of a power-law representation for the system is useful. Furthermore, we investigate the dynamical consequences of this dual mechanism and compare the performance of the system in different simulated experimental conditions.

Conclusion The analysis of our mathematical model suggests that in receptor-protein interacting systems with dual mechanism there may be a shift between double and single activation in a way that intense double protein transducer activation could initiate and dominate the signal in the short term (getting a fast intense signal), while single protein activation could control the system in the medium and long term (when input signal is weaker and decreases slowly). Our investigation suggests that homodimerisation and oligomerisation are mechanisms used to enhance and regulate the dynamic properties of the initial steps in signalling pathways.

SEEK ID: https://fairdomhub.org/publications/91

DOI: 10.1186/1752-0509-2-92

Projects: BaCell-SysMO

Publication type: Not specified

Journal: BMC Syst Biol

Citation:

Date Published: 2008

Registered Mode: Not specified

Authors: Julio Vera, , Walter Kolch,

help Submitter
Citation
Vera, J., Millat, T., Kolch, W., & Wolkenhauer, O. (2008). Dynamics of receptor and protein transducer homodimerisation. In BMC Systems Biology (Vol. 2, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/1752-0509-2-92
Activity

Views: 4828

Created: 8th Nov 2010 at 09:29

Last updated: 8th Dec 2022 at 17:26

help Tags

This item has not yet been tagged.

help Attributions

None

Powered by
(v.1.16.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH