Assays

What is an Assay?
1172 Assays visible to you, out of a total of 2143

A model of the circadian regulation of starch turnover, as published in Seaton, Ebenhoeh, Millar, Pokhilko, "Regulatory principles and experimental approaches to the circadian control of starch turnover",  J. Roy. Soc. Interface, 2013. This model is referred to as "Model Variant 2".Related PublicationsSeaton, Ebenhoeh, Millar, Pokhilko (2013). Regulatory principles and experimental approaches to the circadian control of starch turnover. Journal of the Royal Society Interface. Originally submitted ...

A model of the circadian regulation of starch turnover, as published in Seaton, Ebenhoeh, Millar, Pokhilko, "Regulatory principles and experimental approaches to the circadian control of starch turnover",  J. Roy. Soc. Interface, 2013. This model is referred to as "Model Variant 1".Related PublicationsSeaton, Ebenhoeh, Millar, Pokhilko (2013). Regulatory principles and experimental approaches to the circadian control of starch turnover. Journal of the Royal Society Interface. Originally submitted ...



Originally submitted to PLaSMo on 2010-12-20 14:54:15

Submitter: BioData SynthSys

Biological problem addressed: Gene Regulatory Network

Investigation: Davey, Chris

Study: AFRCtest2 - PLM_25

To calculate the phenological stage of the crop. Note the following definition: phase = the period between two phenological stages, ie. the phase sowing to emergence. This is a submodel of AFRC Wheat 2 model in Simile notation (the XML version will follow shortly). All variables and parameters that are inputs to the submodel are in the "inputs " submodel box, all variables changed by the submodel are outputted via the "outputs" submodel box. Euler integration with 1 day time steps.Related ...

This is a submodel of AFRC Wheat 2 model in Simile notation (the XML version will follow shortly). Reads and processes todays weather data. Calculates Penman evaporation and converts day/month/year to Julian day (allowing for year change and leap years). We acknowledge Mikhail Semenov for kindly allowing us to supply this Rothamsted weather data set with this model. Euler integration with 1 day time steps.Related PublicationsPorter J (1993). AFRCWHEAT2: A Model of the Growth and Development of ...

Submitter: BioData SynthSys

Biological problem addressed: Gene Regulatory Network

Investigation: Davey, Chris

Study: AFRC Wheat 2 weathr submodel - PLM_41

To return today's vernalising effect (see Weir,A.H. et al.,(1984).J.Agric.Sci.,Camb.,102,371-382). This is a submodel of AFRC Wheat 2 model in Simile notation (the XML version will follow shortly). All variables and parameters that are inputs to the submodel are in the "inputs " submodel box, all variables changed by the submodel are outputted via the "outputs" submodel box.Related PublicationsPorter J (1993). AFRCWHEAT2: A Model of the Growth and Development of Wheat Incorporating Responses to ...

Submitter: BioData SynthSys

Biological problem addressed: Gene Regulatory Network

Investigation: Davey, Chris

Study: AFRC Wheat 2 vernal submodel - PLM_40

To return Vapour pressure calculated from Wet and Dry Bulb Temperatures. This is a submodel of AFRC Wheat 2 model in Simile notation (the XML version will follow shortly).

Related Publications
Porter J (1993). AFRCWHEAT2: A Model of the Growth and Development of Wheat Incorporating Responses to Water and Nitrogen.. Eur. J. Agron. 2(2): 69-82..

Originally submitted to PLaSMo on 2011-02-04 15:55:57

Submitter: BioData SynthSys

Biological problem addressed: Gene Regulatory Network

Investigation: Davey, Chris

Study: AFRC Wheat 2 vappres submodel - PLM_39

To return daily thermal time with base TBASE. Thermal time for a day is calculated by splitting the 24 hour period into 8 * 3 hour periods whose relative contribution to thermal time for the day is based on a cosinusoidal variation in temperature between observed maximum and minimum values. See Weir,A.H. et al.,(1984).J.Agric.Sci.,Camb.,102,371-382. This is a submodel of AFRC Wheat 2 model in Simile notation (the XML version will follow shortly).     All variables and parameters that are inputs ...

Submitter: BioData SynthSys

Biological problem addressed: Gene Regulatory Network

Investigation: Davey, Chris

Study: AFRC Wheat 2 tdays submodel - PLM_38

To calculate today's daylength and photoperiod. Daylength is calculated following the treatment of Sellers, Physical Climatology,pp 15-16 and Appendix 2. Daylength is calculated with a correction for atmospheric refraction equivalent to 50 minutes of a degree. Photoperiod is calculated assuming that light is perceived until the centre of the sun is 6 degrees below the horizon. This is a submodel of AFRC Wheat 2 model in Simile notation (the XML version will follow shortly). All variables and ...

Submitter: BioData SynthSys

Biological problem addressed: Gene Regulatory Network

Investigation: Davey, Chris

Study: AFRC Wheat 2 photpd submodel - PLM_37

To calculate leaf and sheath dimensions for main stems and tillers given the emergence length of their leaves and empirical relationships linking leaf number to maximum laminar length. All sizes are in mm. This is a submodel of AFRC Wheat 2 model in Simile notation (the XML version will follow shortly). All variables and parameters that are inputs to the submodel are in the "inputs " submodel box, all variables changed by the submodel are outputted via the "outputs" submodel box.Related ...

Submitter: BioData SynthSys

Biological problem addressed: Gene Regulatory Network

Investigation: Davey, Chris

Study: AFRC Wheat 2 ldim submodel - PLM_36

Transform Calendar day to Julian Day. Converts day, month, year into the equivalent Julian Day allowing for leap years. This is a submodel of AFRC Wheat 2 model in Simile notation (the XML version will follow shortly).Related PublicationsPorter J (1993). AFRCWHEAT2: A Model of the Growth and Development of Wheat Incorporating Responses to Water and Nitrogen. . Eur. J. Agron. 2(2): 69-82.. Originally submitted to PLaSMo on 2011-02-04 15:30:45

Submitter: BioData SynthSys

Biological problem addressed: Gene Regulatory Network

Investigation: Davey, Chris

Study: AFRC Wheat 2 julday submodel - PLM_35

Number of days between 2 Julian days allowing for change of year and leap years. Assumptions : The gap between the two dates is less than 1 year also JDAY1 is before JDAY2. This is a submodel of AFRC Wheat 2 model in Simile notation (the XML version will follow shortly).  Related PublicationsPorter J (1993). AFRCWHEAT2: A Model of the Growth and Development of Wheat Incorporating Responses to Water and Nitrogen. . Eur. J. Agron. 2(2): 69-82.. Originally submitted to PLaSMo on 2011-02-04 15:24:25 ...

Submitter: BioData SynthSys

Biological problem addressed: Gene Regulatory Network

Investigation: Davey, Chris

Study: AFRC Wheat 2 jdaydif submodel - PLM_34

Penman Evaporation over water ( mm/day ). This is a submodel of AFRC Wheat 2 model in Simile notation (the XML version will follow shortly).

Related Publications
Porter J (1993). AFRCWHEAT2: A Model of the Growth and Development of Wheat Incorporating Responses to Water and Nitrogen. . Eur. J. Agron. 2(2): 69-82..

Originally submitted to PLaSMo on 2011-02-04 15:17:42

Submitter: BioData SynthSys

Biological problem addressed: Gene Regulatory Network

Investigation: Davey, Chris

Study: AFRC Wheat 2 evapw submodel - PLM_33

"3PG is an acronym for Physiological Principles Predicting Growth. It is a generalized forest carbon allocation model, published by Landsberg and Waring (1997), that works with any forest biome and can be run as an Excel spreadsheet by practicing foresters given a few days of training. The model uses relatively simple and readily available inputs such as species growth tables, latitude, aspect, weather records, edaphic variables, stand age, and stand density to derive monthly estimates of gross ...

Submitter: BioData SynthSys

Biological problem addressed: Gene Regulatory Network

Investigation: Muetzelfeldt, Robert

Study: 3PG - PLM_12

Information about the fish from the Kollevåg study

Submitter: Karina Dale

Assay type: Experimental Assay Type

Technology type: Technology Type

Investigation: 1 hidden item

Study: Caging study - Kollevåg

Enzyme activity of glutathione-s-transferase (Gst) and catalase (Cat) in Kollevåg samples

Submitter: Karina Dale

Assay type: Experimental Assay Type

Technology type: Enzymatic Activity Measurements

Investigation: 1 hidden item

Study: Caging study - Kollevåg

Concentrations of steroid hormones E2 and T in female cod plasma from Kollevåg fish

Submitter: Karina Dale

Assay type: Experimental Assay Type

Technology type: Technology Type

Investigation: 1 hidden item

Study: Caging study - Kollevåg

Chemical analyses in Kollevåg includes sediment contaminant concentrations, concentrations of various contaminants in cod liver and concentrations of PAH metabolites in cod bile.

Submitter: Karina Dale

Assay type: Experimental Assay Type

Technology type: Technology Type

Investigation: 1 hidden item

Study: Caging study - Kollevåg

Western blot results for Kollevåg samples.

Submitter: Karina Dale

Assay type: Experimental Assay Type

Technology type: Technology Type

Investigation: 1 hidden item

Study: Caging study - Kollevåg

Analyses of gene expression: qPCR analyses in liver (relative expression) and ovaries (absolute expression).

Submitter: Karina Dale

Assay type: Experimental Assay Type

Technology type: Technology Type

Investigation: 1 hidden item

Study: Caging study - Kollevåg

TBARS assay measured oxidative stress as levels of malondialdehyde in samples. Performed in cod liver samples.

Submitter: Karina Dale

Assay type: Experimental Assay Type

Technology type: Technology Type

Investigation: 1 hidden item

Study: Caging study - Kollevåg

Biosense Vtg assay measuring concentrations of vitellogenin in cod blood plasma

Submitter: Karina Dale

Assay type: Experimental Assay Type

Technology type: Technology Type

Investigation: 1 hidden item

Study: Caging study - Kollevåg

Data for Figure 2I-2K in Chew et al. PNAS 2014. Experimental conditions: ∼21.3 °C; 12:12-h light/dark cycle; light intensity, 110 μmol·m−2·s−1;mean daytime CO2 level, 375 ppm. The error bars show the SEs of five plants Further detail on the experimental conditions is contained in the public record on the BioDare resource, link to follow

Data for Figure 3G and Supplementary Figure 4, including gas exchange measurements and photo of the experimental setup. The 'Summary' sheets in the XLSX files often include published graphs. Simulation data are included from FMv1.

These data were acquired in a separate experiment from the biomass, in March 2013. Replication of the earlier biomass study was imperfect, as some plants became a little dry when watering was controlled to reduce moss growth. Sufficient plants grew strongly to measure ...

Data for Figure 3A-3F and Supplementary Figures 2, 3, and 6, including leaf number, biomass and leaf areas. Image data for leaf areas are included in a .ZIP archive. The 'Summary' sheets in the XLSX files often include published graphs. Simulation data are included from FMv1. These data were acquired in June 2012. Experimental conditions: ~22C constant temperature; 12:12-h light/dark cycle; light intensity = 130 μmol·m−2·s−1; average daytime CO2 concentration = 375 ppm. 10 plants per genotype per ...

Data for Figures 5D-5F and Supplementary Figure 7B, 7C, including biomass and leaf areas. Image data for leaf areas are included in a .ZIP archive, with two samples as published in 5D. The 'Summary' sheets in the XLSX files include published graphs. Simulation data are included from FMv1. These data were acquired in April 2014, in a separate experiment from the La(er) and Fei-0. Experimental conditions: ∼20.7 °C constant temperature; 12h:12h light/dark cycle; light intensity = 100μmol·m−2·s−1; ...

Powered by
(v.1.16.0-pre)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH