Assays

What is an Assay?
1017 Assays visible to you, out of a total of 2084

26 intracellular metabolites (amino acids, polyamines, TCA intermediates) in T. brucei under pH stress (pH8.7) have been absolutely quantified using isotope ratio based MS technique.

Extracellular metabolites in T. brucei at different stage of cell growth have been quantified absolutely by isotope ratio based MS technique using uniformly 13C-labelled E. coli extract. This is the case study for method development of absolute quantification for metabolic flux analysis.

Glucose transporter mutants were analyzed under aerobic and aerobic conditions in batch cultures with glucose as substrate. Acetate formation rates and glucose consumption rates were measured, as well as extracellular cAMP concentrations.

Mutant strains which lack one or more of the glucose transport systems were analyzed in aerobic chemostat cultures and compared to batch cultures.

MG1655 and mutant strains with defects in glucose transport systems were analyzed in aerobic and anaerobic batch cultures.

No description specified

ArcA phosphorylation in chemostat cultures grown at different aerobiosis levels was quantitated by Phos-tag SDS-PAGE gel analysis and subsequent immunodetection of ArcA.

Concentration of glycolytic intermediates over time

S. pyogenes M49 (591), E. faecalis V583, and L. lacis NZ9000 and their isogenic ldh deletion mutants were grown glucose free CDM-LAB medium in BIOLOG phenotype microarray plates PM01 and PM02. With this assay the abilitiy of the strains to grow on 190 different carbon sources was determined in 96 well format.

Measurements on Km, Vmax and allosteric activation or inhibition of the heterologously expressed (E. coli) and purifiied main L-lactate dehydrogenase

Measurements on Km, Vmax and allosteric activation or inhibition of the main L-lactate dehydrogenase

Global sensitivity analysis of a kinetic model to determine the sensitivities for each parameter, over a wide parameter range. We used the elementary effects method.

Lumped kinetic model of L. lactis glycolysis, formulated with ordinary differential equations. Simulations are in line with experimental data

This experiment uses a low-copy plasmid based system (MG1655 Δlac FF(-41.5)/RW50) for measuring FNR activity. Initial acetate calibration of the chemostat with the MG1655 Δlac strain was carried out, with β-galactosidase activity from the FF(-41.5)/RW50 reporter plasmid measured at 100%, 80%, 50%, 20% and 0% aerobiosis levels. Finally, the aerobiosis levels were re-determined by calculating the actual acetate flux in the sampled chemostat runs.

Note: the strain used (MG1655 Δlac) is not the same ...

The task of this assay is to determine the impact of oxygen availability on the concentrations of metabolites from different central metabolic pathways. The focus lies on metabolites connected to glycolysis, tri-carbon-acid-cycle and energy metabolism. All strains have been cultured and analysed according to the SOPs listed below

Theoretical analysis of hypothetical sigma factor competition. Based on the model 'transcription factor competition' possible dynamics of sigma factor competition are simulated and analysed using Lineweaver-Burk representations.

experimentally measured extracellular fluxes in yeast Saccharomyces cerevisiae in anaerobic glucose limited chemostat (D=0.1 h-1) on minimal medium

Steady state concentrations of extracellular metabolites in yeast Saccharomyces cerevisiae in anaerobic chemostat at D = 0.1 h-1 on minimal medium

Biomass weight during glucose pulse. Glucose pulse was performed in anaerobically growing yeast Saccharomyces cerevisiae in steady state chemostat (D = 0.1 h-1) and transent concentrations of the extra- and intracellular metabolites from central carbon metabolism (e.g. glycolysis, PPP, glycerol, purines, etc) were measured.

Dynamics of extracellular metabolites (glc, pyr, suc, lac, gly, ac, etoh, fum, mal, cit, including loss of akg, g3p, 2pg, 3pg, r5p, f6p, g6p, 6pg) during glucose pulse. Glucose pulse was performed in anaerobically growing yeast Saccharomyces cerevisiae in steady state chemostat (D = 0.1 h-1) and transent concentrations of the extra- and intracellular metabolites from central carbon metabolism (e.g. glycolysis, PPP, glycerol, purines, etc) were measured.

Dynamics of intracellular metabolites (pyr, suc, fum, mal, akg, pep, g3p, 2pg, 3pg, cit, r5p, f6p, g6p, 6pg, ATP, ADP, AMP, UTP, GTP, inosine, NAD+, IMP, UDP, NADP+, CTP, AdenyloSuccinate, NADPH, trehalose) during glucose pulse. Glucose pulse was performed in anaerobically growing yeast Saccharomyces cerevisiae in steady state chemostat (D = 0.1 h-1) and transent concentrations of the extra- and intracellular metabolites from central carbon metabolism (e.g. glycolysis, PPP, glycerol, purines, ...

Dynamics of macromolecules (total RNA) during glucose pulse. Glucose pulse was performed in anaerobically growing yeast Saccharomyces cerevisiae in steady state chemostat (D = 0.1 h-1) and transent concentrations of the extra- and intracellular metabolites from central carbon metabolism (e.g. glycolysis, PPP, glycerol, purines, etc) were measured.

These files show physiological measurements from the Sheffield Infors chemostat which were made during acetate calibration and also when sampling for the steady-state transcriptional profiles.

This assay involved the determination of transcriptional profiles at 0, 2, 5, 10, 15 and 20 minutes through aerobic to anaerobic gas transitions and anaerobic to aerobic gas transitions. In each case an aerobic or anaerobic steady state was created, RNA sampled (0 min) and then the gas supply changed. RNA samples were then taken from the time at which the gas supply was changed.

For anaerobic conditions 5% CO2, 95% N2 was used.

The full transcriptional dataset is available from ArrayExpress ...

The transcriptional profiles of steady state E. coli cultures at a range of aerobiosis levels were determined. Two biological replicates and two technical replicates were carried out. Microarrays were carried out in a reference style (i.e. RNA vs a gDNA reference).

This assay describes the determination of concentrations and ratio of metabolites of adenine nucleotides (NAD and NADH). These metabolites have been extracted from Escherichia coli MG1655 and isgenic mutant strains.

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH