The model is an extensio of PLM_67v3 with an additional an additional variable Temp in ODE 25. This change allows to simulated warm pulses that affect EC stability using COPASI. <br><br><strong>Originally submitted to PLaSMo on 2014-03-10 13:16:25</strong>
Export PNG
Creators
Additional credit
Uriel Urquiza Garcia
Submitter
Views: 1498
Created: 10th Jan 2019 at 16:38
Last updated: 20th Dec 2019 at 13:37
This item has not yet been tagged.
Related items
Projects: Millar group, TiMet, PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops, POP - the Parameter Optimisation Problem, Regulation of flowering time in natural conditions, PlaSMo model repository
Institutions: University of Edinburgh
https://orcid.org/0000-0003-1756-3654Projects: PlaSMo model repository
Institutions: University of Edinburgh
Projects: Millar group, PlaSMo model repository, PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops, Light and plant development, Light control of leaf development, Toggle switch, Reduce Complexity (RCO) reconstruction, Model Driven Prime Editing, PULSE 2.0, Plant optogenetics
Institutions: University of Edinburgh, Heinrich Heine University of Düsseldorf
https://orcid.org/0000-0002-7975-5013SynthSys is the University of Edinburgh's research organisation in interdisciplinary, Synthetic and Systems Biology, founded in 2012 as the successor to the Centre for Systems Biology at Edinburgh (CSBE).
Projects: Millar group, PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops, TiMet, POP - the Parameter Optimisation Problem, Regulation of flowering time in natural conditions, PlaSMo model repository
Web page: http://www.synthsys.ed.ac.uk
What is PlaSMo? PlaSMo stands for Plant Systems-biology Modelling Ensuring the achievements of yesterday's Mathematical Modellers will be available for the Systems Biologists of tomorrow.
Our aims
To identify plant mathematical models useful to the UK plant systems biology community, which are currently in a variety of legacy formats and in danger of being lost To represent these models in a declarative XML-based format, which is closer to the systems biology standard SBML To evaluate the behaviour ...
Programme: SynthSys
Public web page: Not specified
Organisms: Arabidopsis thaliana, Ostreococcus tauri
Collection of models submitted to PLaSMo by Uriel Urquiza Garcia and automatically transferred to FAIRDOM Hub.
Submitter: BioData SynthSys
Studies: F2014.1 - PLM_1030, PLM_67v3withTempPulse - PLM_81
Assays: F2014.1 - PLM_1030, version 1, PLM_67v3withTempPulse - PLM_81, version 1
Snapshots: No snapshots
The model is an extensio of PLM_67v3 with an additional an additional variable Temp in ODE 25. This change allows to simulated warm pulses that affect EC stability using COPASI.
Originally submitted to PLaSMo on 2014-03-10 13:16:25
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Urquiza Garcia, Uriel
Organisms: No organisms
Models: 2 hidden items
SOPs: No SOPs
Data files: No Data files
Snapshots: No snapshots