Assays
What is an Assay?Filters
Creator - Dr. Daniel D. Seaton.
Graphical overview of Arabidopsis clock model P2011 in SBGN, from SBGN-ED in VANTED v2.
N.B. to pass PlaSMo validation before update, the
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Millar, Andrew (ex-PlaSMo models)
To check if all works fine after struts update. Checking editorial options
Additional Attributes
tested:
Yes, against schema
Originally submitted to PLaSMo on 2013-11-22 15:15:40
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Zielinski, Tomasz
Study: Plasmo test model1 - PLM_80
dfds
Version Comments
sdff a fdafafadfafa f f afafaf fd fdfdfd
Originally submitted to PLaSMo on 2015-09-02 18:27:55
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Zielinski, Tomasz
Comparison of Kcat values from the model and values from literature.
Submitter: Niels Zondervan
Assay type: Enzymatic Assay
Technology type: Technology Type
Investigation: Modelling of M. pneumoniae metabolism
Study: Core Model training
Construction and manual curated Genome Scale Metabolitic model of M. hyopneumoniae. Dynamic flux balance analysis was performed for glucose uptake
Submitter: Niels Zondervan
Biological problem addressed: Model Analysis Type
Investigation: Modelling of M. pneumoniae metabolism
Submitter: Niels Zondervan
Assay type: Transcriptional Profiling
Technology type: Technology Type
Investigation: Modelling of M. pneumoniae metabolism
Contains the analysis of the internal metabolite concentrations of the 40 independend samples Pearson correlation was used to generate heatmaps Pearson correlation with p-value cutof of 0.001 was used and as input for a correlation network (grouping using H-clust) Principal component analysis was performed on samples, F-ion and H-ion data combined and seperately Zip files contains the data (FC.txt), PCA and heatmap plots and the script to re-generate these plots
Submitter: Niels Zondervan
Biological problem addressed: Model Analysis Type
Investigation: Modelling of M. pneumoniae metabolism
Study: Metabolomics measurements
This is a model of the circadian clock of Ostreococcus tauri, with a single negative feedback loop between TOC1 and CCA1 (a.k.a. LHY), and multiple light inputs. It was used and described in Troein et al., Plant Journal (2011). The model has been tested in Copasi, where it reproduces the behaviour of the original (which consisted of equations loaded from a text file by a more or less custom C++ program).Comments Not formulated to easily allow addition of the ISSF to replace the present light ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Troein, Carl
This is a model of the circadian clock of Ostreococcus tauri, with a single negative feedback loop between TOC1 and CCA1 (a.k.a. LHY), and multiple light inputs. It was used and described in Troein et al., Plant Journal (2011). The model has been tested in Copasi, where it reproduces the behaviour of the original (which consisted of equations loaded from a text file by a more or less custom C++ program).Comments Not formulated to easily allow addition of the ISSF to replace the present light ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Troein, Carl
"TRIFFID (Top-down Representation of Interactive Foliage and Flora Including Dynamics)" is a dynamic global vegetation model, which updates the plant distribution and soil carbon based on climate-sensitive CO2 fluxes at the land-atmosphere interface. The surface CO2 fluxes associated with photosynthesis and plant respiration are calculated in the MOSES 2 tiled land-surface scheme (Essery et al (In preparation)), on each atmospheric model timestep (normally 30 minutes), for each of 5 plant functional ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Muetzelfeldt, Robert
Study: TRIFFID - PLM_5
Cytoscape silqueue specific protein detection
Originally submitted to PLaSMo on 2012-03-02 12:44:13
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Graf, Alexandra
Cytoscape shoot specific diurnal transcript oscillation.
Originally submitted to PLaSMo on 2012-03-02 12:42:30
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Graf, Alexandra
The seed network, uploaded as a test from Cytoscape
Version Comments
Uploading new version for testing
Originally submitted to PLaSMo on 2012-02-24 11:41:50
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Graf, Alexandra
The seed network, uploaded as a test from Cytoscape
Version Comments
Saving second/third version as a live test
Originally submitted to PLaSMo on 2012-02-24 11:41:50
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Graf, Alexandra
Test for root network
Originally submitted to PLaSMo on 2012-02-27 14:24:59
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Graf, Alexandra
PP interaction network exported from Cytoscape in XGMML
Originally submitted to PLaSMo on 2012-03-02 12:32:33
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Graf, Alexandra
Trial upload of the pollen netwrok from TiMet
Version Comments
Live pollen upload test
Originally submitted to PLaSMo on 2012-02-27 12:17:46
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Graf, Alexandra
Trial upload of the pollen netwrok from TiMet
Originally submitted to PLaSMo on 2012-02-27 12:17:46
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Graf, Alexandra
TiMet flower specific protein detection network
Originally submitted to PLaSMo on 2012-03-02 12:39:54
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Graf, Alexandra
This is a version of the T2011.1.2 Ostreococcus tauri 1-loop clock model where light input to the degradation rate of TOC1 has been eliminated by setting the rate to the value it had in the light in the original model. This model was used to generate Figure 2D in Dixon et al. New Phytologist (2014)Related Publications Laura E. Dixon, Sarah K. Hodge, Gerben van Ooijen, Carl Troein, Ozgur E. Akman, Andrew J. Millar (2014). Light and circadian regulation of clock components aids flexible responses ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Troein, Carl
This is a version of the T2011.1.2 Ostreococcus tauri 1-loop clock model where light input to the degradation rate of TOC1 has been eliminated by setting the rate to the value it had in the light in the original model. This model was used to generate Figure 2D in Dixon et al. New Phytologist (2014)Related Publications Laura E. Dixon, Sarah K. Hodge, Gerben van Ooijen, Carl Troein, Ozgur E. Akman, Andrew J. Millar (2014). Light and circadian regulation of clock components aids flexible responses ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Troein, Carl
This is a version of the T2011.1.2 Ostreococcus tauri 1-loop clock model where light input to the degradation rate of TOC1 has been eliminated by setting the rate to the value it had in the dark in the original model. This model was used to generate Figure 2D in Dixon et al. New Phytologist (2014)Related PublicationsLaura E. Dixon, Sarah K. Hodge, Gerben van Ooijen, Carl Troein, Ozgur E. Akman, Andrew J. Millar (2014). Light and circadian regulation of clock components aids flexible responses to ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Troein, Carl
This is a version of the T2011.1.2 Ostreococcus tauri 1-loop clock model where light input to the activation rate of TOC1 has been eliminated by setting the rate to the value it had in the light in the original model. This model was used to generate Figure 2E in Dixon et al. New Phytologist (2014)Related PublicationsLaura E. Dixon, Sarah K. Hodge, Gerben van Ooijen, Carl Troein, Ozgur E. Akman, Andrew J. Millar (2014). Light and circadian regulation of clock components aids flexible responses to ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Troein, Carl
This is a version of the T2011.1.2 Ostreococcus tauri 1-loop clock model where light input to the activation rate of TOC1 has been eliminated by setting the rate to the value it had in the dark in the original model. This model was used to generate Figure 2E in Dixon et al. New Phytologist (2014)Related PublicationsLaura E. Dixon, Sarah K. Hodge, Gerben van Ooijen, Carl Troein, Ozgur E. Akman, Andrew J. Millar (2014). Light and circadian regulation of clock components aids flexible responses to ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Troein, Carl
This is a version of the T2011.1.2 Ostreococcus tauri 1-loop clock model where light input to the transcription rate of CCA1 has been eliminated by setting the rate to the value it had in the light in the original model. This model was used to generate Figure 2C in Dixon et al. New Phytologist (2014)Related PublicationsLaura E. Dixon, Sarah K. Hodge, Gerben van Ooijen, Carl Troein, Ozgur E. Akman, Andrew J. Millar (2014). Light and circadian regulation of clock components aids flexible responses ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Troein, Carl
This is a version of the T2011.1.2 Ostreococcus tauri 1-loop clock model where light input to the transcription rate of CCA1 has been eliminated by setting the rate to the value it had in the dark in the original model. This model was used to generate Figure 2C in Dixon et al. New Phytologist (2014)Related PublicationsLaura E. Dixon, Sarah K. Hodge, Gerben van Ooijen, Carl Troein, Ozgur E. Akman, Andrew J. Millar (2014). Light and circadian regulation of clock components aids flexible responses ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Troein, Carl
This is a version of the T2011.1.2 Ostreococcus tauri 1-loop clock model where light input to the degradation rate of CCA1 has been eliminated by setting the rate to the value it had in the light in the original model. This model was used to generate Figure 2B in Dixon et al. New Phytologist (2014)Related PublicationsLaura E. Dixon, Sarah K. Hodge, Gerben van Ooijen, Carl Troein, Ozgur E. Akman, Andrew J. Millar (2014). Light and circadian regulation of clock components aids flexible responses ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Troein, Carl
This is a version of the T2011.1.2 Ostreococcus tauri 1-loop clock model where light input to the degradation rate of CCA1 has been eliminated by setting the rate to the value it had in the dark in the original model. This model was used to generate Figure 2B in Dixon et al. New Phytologist (2014)Related PublicationsLaura E. Dixon, Sarah K. Hodge, Gerben van Ooijen, Carl Troein, Ozgur E. Akman, Andrew J. Millar (2014). Light and circadian regulation of clock components aids flexible responses to ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Troein, Carl
This is a version of the T2011.1.2 Ostreococcus tauri 1-loop clock model where the light accumulator (acc) has been eliminated by setting its value to 1. This model was used to generate Figure 2F in Dixon et al. New Phytologist (2014)Related PublicationsLaura E. Dixon, Sarah K. Hodge, Gerben van Ooijen, Carl Troein, Ozgur E. Akman, Andrew J. Millar (2014). Light and circadian regulation of clock components aids flexible responses to environmental signals. New Phytologist. Originally submitted to ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Troein, Carl
This is a version of the T2011.1.2 Ostreococcus tauri 1-loop clock model where the light accumulator (acc) has been eliminated by replacing it with immediate light input. This model was used to generate Figure 2F in Dixon et al. New Phytologist (2014)Related PublicationsLaura E. Dixon, Sarah K. Hodge, Gerben van Ooijen, Carl Troein, Ozgur E. Akman, Andrew J. Millar (2014). Light and circadian regulation of clock components aids flexible responses to environmental signals. New Phytologist. Originally ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Troein, Carl