Models

What is a Model?
418 Models visible to you, out of a total of 662

PGK yeast Fig1a

Creator: Jacky Snoep

Submitter: Jacky Snoep

PGK yeast with/without recycling

Creator: Jacky Snoep

Submitter: Jacky Snoep

No description specified

Creators: Dawie van Niekerk, Jacky Snoep

Submitter: Dawie van Niekerk

Metabolic model of Sulfolobus solfataricus P2 in the SBML (sbml) and metano (txt, sce, fba) format. Scenarios are specific for growth on D-glucose or caseinhydrolysate as sole carbon source.

Creator: Helge Stark

Submitter: Helge Stark

No description specified

Creator: Robert Muetzelfeldt

Submitter: Robert Muetzelfeldt

No description specified

Creators: Dawie van Niekerk, Jacky Snoep

Submitter: Dawie van Niekerk

No description specified

Creators: Dawie van Niekerk, Jacky Snoep

Submitter: Dawie van Niekerk

Metabolic model of Sulfolobus solfataricus P2 in the SBML (xml) and metano (txt, sce, fba) format. Scenarios are specific for growth on D-glucose or L-fucose as sole carbon source. Different theoretical routes of L-fucose degradation were modeled (E. coli-like, Xanthomonas-like and lactaldehyde-forming). Highest overall agreement between the model and experimental data was observed for the lactaldehyde-forming route.

Creators: Jacqueline Wolf, Helge Stark, Dietmar Schomburg

Submitter: Jacqueline Wolf

No description specified

Creator: Matthias König

Submitter: Matthias König

The model presents a multi-compartmental (mesophyll, phloem and root) metabolic model of growing Arabidopsis thaliana. The flux balance analysis (FBA) of the model quantifies: sugar metabolism, central carbon and nitrogen metabolism, energy and redox metabolism, proton turnover, sucrose translocation from mesophyll to root and biomass growth under both dark- and light-growth conditions with corresponding growth either on starch (in darkness) or on CO2 (under light). The FBA predicts that ...

Creators: Maksim Zakhartsev, Olga Krebs, Irina Medvedeva, Ilya Akberdin, Yuriy Orlov

Submitter: Maksim Zakhartsev

E.coli Core model, with additional reactions added to generate the beta-oxadation cycle. This is the basic model used in RobOKoD: microbial strain design for (over)production of target compounds (http://fairdomhub.org/publications/236).

Creator: Natalie Stanford

Submitter: Natalie Stanford

No description specified

Creators: Dawie van Niekerk, Jacky Snoep

Submitter: Dawie van Niekerk

No description specified

Creators: Dawie van Niekerk, Jacky Snoep

Submitter: Dawie van Niekerk

No description specified

Creators: Dawie van Niekerk, Jacky Snoep

Submitter: Dawie van Niekerk

No description specified

Creators: Dawie van Niekerk, Jacky Snoep

Submitter: Dawie van Niekerk

No description specified

Creators: Dawie van Niekerk, Jacky Snoep

Submitter: Dawie van Niekerk

No description specified

Creators: Dawie van Niekerk, Jacky Snoep

Submitter: Dawie van Niekerk

SBML description of L. lactis glycolysis. Same as the uploaded Copasi file

Creator: Mark Musters

Submitter: Mark Musters

No description specified

Creator: Jacky Snoep

Submitter: Jacky Snoep

No description specified

Creator: Jacky Snoep

Submitter: Jacky Snoep

No description specified

Creator: Jacky Snoep

Submitter: Jacky Snoep

No description specified

Creator: Jacky Snoep

Submitter: Jacky Snoep

No description specified

Creator: Malgorzata Adamczyk

Submitter: Malgorzata Adamczyk

Preliminary metabolic network of S. pyogenes including primary metabolism, polysaccharide metabolism, purine and pyrimidine biosoynthesis, teichoic acid biosynthesis, fatty acid and phospholipid bioynthesis, amino acid metabolism, vitamins and cofactors. The model still needs to be validated.

Creator: Jennifer Levering

Submitter: Jennifer Levering

No description specified

Creator: Nadine Veith

Submitter: Nadine Veith

Batch and chemostat model of L lactis. Scope of the model is to provide a mechanistic explanation of the switch between mixed acid and homolactic fermentation.

Creator: domenico bellomo

Submitter: domenico bellomo

The principles of Stealthy Engineering (Adamczyk et al.: Biotechnology Journal 2012; 7(7):877-83) are illustrated in this model by emulating a cross engineering intervention between L. lactis and S. cerevisiae.

The case study consists of replacing the native glucose uptake system of L. lactis with that native to the yeast S. cerevisiae. A modified version of Hoefnagel et al.’s model of L. lacrtis’ central metabolism was used as starting point. The total functional replacement of the PTS with the ...

Creators: Malgorzata Adamczyk, Hans V. Westerhoff, Ettore Murabito

Submitter: Ettore Murabito

No description specified

Creators: Dawie van Niekerk, Jacky Snoep

Submitter: Dawie van Niekerk

No description specified

Creators: Dawie van Niekerk, Jacky Snoep

Submitter: Dawie van Niekerk

No description specified

Creators: Dawie van Niekerk, Jacky Snoep

Submitter: Dawie van Niekerk

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH