- Order Studies
Click on Snapshot 2 to download data, models and analysis for Daniel Seaton et al. biorXiv 2017 https://doi.org/10.1101/182071 and Molecular Systems Biology, accepted Jan 2018, https://doi.org/10.15252/msb.20177962. Note that the published paper cannot be fully linked into this record as the DOI above was not live when we made the Research Object from this Investigation on FAIRDOMHub.
SEEK ID: https://fairdomhub.org/investigations/163
Projects: Millar group, TiMet
Investigation position:
Export PNG
Creators
Additional credit
Alexander Graf, Wilhelm Gruissem, Mark Stitt
Submitter
Views: 3718
Created: 16th Nov 2017 at 12:04
Last updated: 18th Sep 2018 at 07:48
This item has not yet been tagged.
Related items
- People (3)
- Programmes (1)
- Projects (2)
- Studies (4)
- Assays (7)
- Data files (12)
- Models (2)
- Publications (4)
Projects: Millar group, TiMet, PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops, POP - the Parameter Optimisation Problem, Regulation of flowering time in natural conditions, PlaSMo model repository
Institutions: University of Edinburgh
https://orcid.org/0000-0003-1756-3654SynthSys is the University of Edinburgh's research organisation in interdisciplinary, Synthetic and Systems Biology, founded in 2012 as the successor to the Centre for Systems Biology at Edinburgh (CSBE).
Projects: Millar group, PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops, TiMet, POP - the Parameter Optimisation Problem, Regulation of flowering time in natural conditions, PlaSMo model repository
Web page: http://www.synthsys.ed.ac.uk
Andrew Millar's research group, University of Edinburgh
Programme: SynthSys
Public web page: http://www.amillar.org
Organisms: Escherichia coli, Arabidopsis thaliana, Ostreococcus tauri
EU FP7 collaborative project TiMet, award number 245143. Funded 2010-2015. "TiMet assembles world leaders in experimental and theoretical plant systems biology to advance understanding of the regulatory interactions between the circadian clock and plant metabolism, and their emergent effects on whole-plant growth and productivity."
Programme: SynthSys
Public web page: http://timing-metabolism.eu/
Organisms: Arabidopsis thaliana, Ostreococcus tauri
Literature data used in the Seaton et al. 2017 study; data processing by Daniel Seaton.
Submitter: Andrew Millar
Investigation: Photoperiodic control of the Arabidopsis proteo...
Assays: Blasing et al, 2005, diurnal microarray in 12L:12D, Stitt lab, TiMet photoperiod microarrays
Snapshots: No snapshots
Experimental data reported in the Seaton et al. 2017 study; data processing by Alex Graf. Part of the EU FP7 TiMet project.
Submitter: Andrew Millar
Investigation: Photoperiodic control of the Arabidopsis proteo...
Assays: Photoperiod proteomics
Snapshots: No snapshots
Literature data and associated scripts analysed in the Seaton et al. 2017 study; data processing by Daniel Seaton.
Submitter: Andrew Millar
Investigation: Photoperiodic control of the Arabidopsis proteo...
Assays: Aryal et al, 2011, metabolic labelling of Cyanothece protein synthesis, Estimation of rates of translation and turnover from proteomics datasets, Martin et al, 2012, Ostreococcus N15 labelling proteomics data
Snapshots: No snapshots
Data analysis and modelling scripts and results for the Seaton et al. 2017 study, from Daniel Seaton.
Submitter: Andrew Millar
Investigation: Photoperiodic control of the Arabidopsis proteo...
Assays: Translational coincidence model
Snapshots: No snapshots
Transcript profiling by microarray in 4, 6, 8, 12 and 18 h photoperiods, originally published in Flis et al, 2016, Photoperiod-dependent changes in the phase of core clock transcripts and global transcriptional outputs at dawn and dusk in Arabidopsis. doi: 10.1111/pce.12754.
Submitter: Daniel Seaton
Assay type: Gene Expression Profiling
Technology type: Microarray
Investigation: Photoperiodic control of the Arabidopsis proteo...
Organisms: Arabidopsis thaliana : Col-0 wild type (wild-type / wild-type)
SOPs: No SOPs
Data files: Flis et al, 2016, Supplemental Table S4, Global...
Snapshots: No snapshots
Plant material The same plant material used for transcriptome analysis in (Flis et al., 2016) was the basis of our proteome study. Briefly, Arabidopsis thaliana Col-0 plants were grown on GS 90 soil mixed in a ratio 2:1 (v/v) with vermiculite. Plants were grown for 1 week in a 16 h light (250 μmol m−2 s−1, 20 °C)/8 h dark (6 °C) regime followed by an 8 h light (160 μmol m−2 s−1, 20 °C)/16 h dark (16 °C) regime for one week. Plants were then replanted with five seedlings per pot, transferred for ...
Submitter: Daniel Seaton
Assay type: Protein Quantification
Technology type: Mass Spectrometry
Investigation: Photoperiodic control of the Arabidopsis proteo...
Organisms: Arabidopsis thaliana : Col-0 wild type (wild-type / wild-type)
SOPs: No SOPs
Data files: Proteomics data file submission to PRIDE, PXD00..., Sample description table for Proteomics data fi..., Table EV1 - Quantitative proteomics dataset, Table EV3, Statistical analysis of protein chan...
Snapshots: No snapshots
Submitter: Daniel Seaton
Assay type: Gene Expression Profiling
Technology type: Microarray
Investigation: Photoperiodic control of the Arabidopsis proteo...
Organisms: Arabidopsis thaliana : Col-0 wild type (wild-type / wild-type)
SOPs: No SOPs
Data files: Blasing et al, 2005, diurnal microarray dataset...
Snapshots: No snapshots
These Python scripts define and simulate the translational coincidence model. This model takes measured transcript dynamics (Blasing et al, 2005) in 12L:12D, measured synthesis rates of protein in light compared to dark (Pal et al, 2013), and outputs predicted changes in protein abundance between short (6h) and long (18h) photoperiods. These are compared to the photoperiod proteomics dataset we generated.
Submitter: Daniel Seaton
Biological problem addressed: Model Analysis Type
Investigation: Photoperiodic control of the Arabidopsis proteo...
Organisms: Arabidopsis thaliana : Col-0 wild type (wild-type / wild-type)
Models: Translational coincidence modelling - python sc...
SOPs: No SOPs
Data files: Blasing et al, 2005, diurnal microarray dataset..., Table EV1 - Quantitative proteomics dataset
Snapshots: No snapshots
Proteomics data for N15 incorporation into protein in Ostreococcus grown in 12L:12D light:dark cycles.
Submitter: Daniel Seaton
Assay type: Proteomics
Technology type: Mass Spectrometry
Investigation: Photoperiodic control of the Arabidopsis proteo...
Organisms: No organisms
SOPs: No SOPs
Data files: Martin et al, 2012, Ostreococcus N15 labelling ...
Snapshots: No snapshots
Quantitative proteomic analysis of Cyanothece ATCC51142 grown in 12L:12D light:dark cycles, using partial metabolic labeling and LC-MS analysis.
Submitter: Daniel Seaton
Assay type: Proteomics
Technology type: Mass Spectrometry
Investigation: Photoperiodic control of the Arabidopsis proteo...
Organisms: No organisms
SOPs: No SOPs
Data files: Aryal et al, 2011, metabolic labelling of Cyano...
Snapshots: No snapshots
Data and Python scripts to run the analysis of literature data that estimates rates of protein synthesis in the light and dark, and overall rates of protein turnover, in Cyanothece and Ostrecoccus tauri.
Submitter: Daniel Seaton
Biological problem addressed: Model Analysis Type
Investigation: Photoperiodic control of the Arabidopsis proteo...
Organisms: Ostreococcus tauri
Models: Estimation of translation and turnover - python...
SOPs: No SOPs
Data files: Aryal et al, 2011, metabolic labelling of Cyano..., Calculated rates of protein degradation in Cyan..., Calculated rates of protein degradation in Ostr..., Calculated rates of protein synthesis in the li..., Calculated rates of protein synthesis in the li..., Martin et al, 2012, Ostreococcus N15 labelling ...
Snapshots: No snapshots
Data curation notes provided by Alex Graf via Willi Gruissem, in addition to the PRIDE deposition.
The Excel file gives the list of samples uploaded into PRIDE. here - https://fairdomhub.org/data_files/3704
The published experimental design might lead one to expect 4x3x2x7 = 168 samples. There are more than 168 samples in the PRIDE upload for the following reasons:
First, all of the measurements from the experiment had been uploaded, including files for measurements that were repeated because of ...
Creators: Andrew Millar, Alexander Graf, Katja Baerenfaller, Willi Gruissem
Submitter: Andrew Millar
Investigations: Photoperiodic control of the Arabidopsis proteo...
Studies: Photoperiod-specific proteome data for Arabidopsis
Assays: Photoperiod proteomics
This Excel file lists the samples uploaded in PRIDE. The table “Table Sorted PP and Replicates” in the Excel file has all the relevant annotation.
There are more than the expected 168 samples in the PRIDE upload for the following reasons:
First, all of the measurements from the experiment had been uploaded, including files for measurements that were repeated because of problems during the MS run. These samples are not annotated in the table. Second, we had included 4 Gold Standard samples (2 ...
Creators: Alexander Graf, Katja Baerenfaller, Willi Gruissem
Submitter: Andrew Millar
Investigations: Photoperiodic control of the Arabidopsis proteo...
Studies: Photoperiod-specific proteome data for Arabidopsis
Assays: Photoperiod proteomics
Creators: Daniel Seaton, Andrew Millar
Submitter: Daniel Seaton
Microarray data at end of day (ED) and end of night (EN) in 4, 6, 8, 12, and 18h photoperiods.
Creator: Daniel Seaton
Submitter: Daniel Seaton
Investigations: Photoperiodic control of the Arabidopsis proteo...
Mean and standard deviation of protein abundances in 6h, 8h, 12h, and 18h photoperiods.
Creators: Daniel Seaton, Andrew Millar
Submitter: Daniel Seaton
Results of the statistical analysis, identifying proteins that change in abundance significantly across photoperiods.
Creators: Daniel Seaton, Andrew Millar
Submitter: Daniel Seaton
Investigations: Photoperiodic control of the Arabidopsis proteo...
Studies: Photoperiod-specific proteome data for Arabidopsis
Assays: Photoperiod proteomics
Creator: Daniel Seaton
Submitter: Daniel Seaton
Proteomics data for N15 incorporation into protein in Ostreococcus grown in 12L:12D light:dark cycles.
Creators: Daniel Seaton, Andrew Millar
Submitter: Daniel Seaton
Quantitative proteomic analysis of Cyanothece ATCC51142 grown in 12L:12D light:dark cycles, using partial metabolic labeling and LC-MS analysis.
Creators: Daniel Seaton, Andrew Millar
Submitter: Daniel Seaton
Creator: Daniel Seaton
Submitter: Daniel Seaton
Creator: Daniel Seaton
Submitter: Daniel Seaton
Creator: Daniel Seaton
Submitter: Daniel Seaton
Python scripts to run the analysis estimating rates of protein synthesis in the light and dark, and overall rates of protein turnover, in Cyanothece and Ostrecoccus tauri.
Creators: Daniel Seaton, Andrew Millar
Submitter: Daniel Seaton
Model type: Not specified
Model format: Not specified
Environment: Not specified
Organism: Not specified
Investigations: Photoperiodic control of the Arabidopsis proteo...
Creator: Daniel Seaton
Submitter: Daniel Seaton
Model type: Algebraic equations
Model format: Not specified
Environment: Not specified
Organism: Arabidopsis thaliana
Investigations: Photoperiodic control of the Arabidopsis proteo...
Studies: Modelling and analysis of translational coincid...
Assays: Translational coincidence model
Abstract (Expand)
Authors: Daniel Seaton, Alexander Graf, Katja Baerenfaller, Mark Stitt, Andrew Millar, Wilhelm Gruissem
Date Published: No date defined
Publication Type: Not specified
DOI: 10.1101/182071
Citation: Photoperiodic control of the Arabidopsis proteome reveals a translational coincidence mechanism
Abstract (Expand)
Authors: A. Flis, R. Sulpice, D. D. Seaton, A. A. Ivakov, M. Liput, C. Abel, A. J. Millar, M. Stitt
Date Published: No date defined
Publication Type: Not specified
PubMed ID: 27075884
Citation: Plant Cell Environ. 2016 Sep;39(9):1955-81. doi: 10.1111/pce.12754. Epub 2016 Jul 15.
Abstract (Expand)
Authors: U. K. Aryal, J. Stockel, R. K. Krovvidi, M. A. Gritsenko, M. E. Monroe, R. J. Moore, D. W. Koppenaal, R. D. Smith, H. B. Pakrasi, J. M. Jacobs
Date Published: No date defined
Publication Type: Not specified
PubMed ID: 22133144
Citation: BMC Syst Biol. 2011 Dec 1;5:194. doi: 10.1186/1752-0509-5-194.
Abstract (Expand)
Authors: S. F. Martin, V. S. Munagapati, E. Salvo-Chirnside, L. E. Kerr, T. Le Bihan
Date Published: No date defined
Publication Type: Not specified
PubMed ID: 22077659
Citation: J Proteome Res. 2012 Jan 1;11(1):476-86. doi: 10.1021/pr2009302. Epub 2011 Dec 1.