Experimental data reported in the Seaton et al. 2017 study; data processing by Alex Graf. Part of the EU FP7 TiMet project.
SEEK ID: https://fairdomhub.org/studies/301
Photoperiodic control of the Arabidopsis proteome reveals a translational coincidence mechanism
Projects: Millar group, TiMet
Study position:
Experimentalists: Plant samples generated by Mark Stitt lab, Max Planck Institute, Golm; Proteomics study and data analysis from Alex Graf; Katja Baerenfaller; Wilhelm Gruissem.
Export PNG
Views: 2537
Created: 16th Nov 2017 at 12:19
Last updated: 20th Feb 2018 at 22:03
This item has not yet been tagged.
Related items
- People (2)
- Programmes (1)
- Projects (2)
- Investigations (1)
- Assays (1)
- Data files (4)
- Publications (1)
Projects: Millar group, TiMet, PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops, POP - the Parameter Optimisation Problem, Regulation of flowering time in natural conditions, PlaSMo model repository
Institutions: University of Edinburgh
https://orcid.org/0000-0003-1756-3654SynthSys is the University of Edinburgh's research organisation in interdisciplinary, Synthetic and Systems Biology, founded in 2012 as the successor to the Centre for Systems Biology at Edinburgh (CSBE).
Projects: Millar group, PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops, TiMet, POP - the Parameter Optimisation Problem, Regulation of flowering time in natural conditions, PlaSMo model repository
Web page: http://www.synthsys.ed.ac.uk
Andrew Millar's research group, University of Edinburgh
Programme: SynthSys
Public web page: http://www.amillar.org
Organisms: Escherichia coli, Arabidopsis thaliana, Ostreococcus tauri
EU FP7 collaborative project TiMet, award number 245143. Funded 2010-2015. "TiMet assembles world leaders in experimental and theoretical plant systems biology to advance understanding of the regulatory interactions between the circadian clock and plant metabolism, and their emergent effects on whole-plant growth and productivity."
Programme: SynthSys
Public web page: http://timing-metabolism.eu/
Organisms: Arabidopsis thaliana, Ostreococcus tauri
Click on Snapshot 2 to download data, models and analysis for Daniel Seaton et al. biorXiv 2017 https://doi.org/10.1101/182071 and Molecular Systems Biology, accepted Jan 2018, https://doi.org/10.15252/msb.20177962. Note that the published paper cannot be fully linked into this record as the DOI above was not live when we made the Research Object from this Investigation on FAIRDOMHub.
Submitter: Andrew Millar
Studies: Modelling and analysis of translational coincidence, Photoperiod-specific proteome data for Arabidopsis, Proteome and translation rate data for the Ostreococcus alga and for cya..., Rhythmic and photoperiod-specific transcriptome datasets for Arabidopsis
Assays: Aryal et al, 2011, metabolic labelling of Cyanothece protein synthesis, Blasing et al, 2005, diurnal microarray in 12L:12D, Estimation of rates of translation and turnover from proteomics datasets, Martin et al, 2012, Ostreococcus N15 labelling proteomics data, Photoperiod proteomics, Stitt lab, TiMet photoperiod microarrays, Translational coincidence model
Snapshots: Snapshot 1, Snapshot 2
Plant material The same plant material used for transcriptome analysis in (Flis et al., 2016) was the basis of our proteome study. Briefly, Arabidopsis thaliana Col-0 plants were grown on GS 90 soil mixed in a ratio 2:1 (v/v) with vermiculite. Plants were grown for 1 week in a 16 h light (250 μmol m−2 s−1, 20 °C)/8 h dark (6 °C) regime followed by an 8 h light (160 μmol m−2 s−1, 20 °C)/16 h dark (16 °C) regime for one week. Plants were then replanted with five seedlings per pot, transferred for ...
Submitter: Daniel Seaton
Assay type: Protein Quantification
Technology type: Mass Spectrometry
Investigation: Photoperiodic control of the Arabidopsis proteo...
Organisms: Arabidopsis thaliana : Col-0 wild type (wild-type / wild-type)
SOPs: No SOPs
Data files: Proteomics data file submission to PRIDE, PXD00..., Sample description table for Proteomics data fi..., Table EV1 - Quantitative proteomics dataset, Table EV3, Statistical analysis of protein chan...
Snapshots: No snapshots
Data curation notes provided by Alex Graf via Willi Gruissem, in addition to the PRIDE deposition.
The Excel file gives the list of samples uploaded into PRIDE. here - https://fairdomhub.org/data_files/3704
The published experimental design might lead one to expect 4x3x2x7 = 168 samples. There are more than 168 samples in the PRIDE upload for the following reasons:
First, all of the measurements from the experiment had been uploaded, including files for measurements that were repeated because of ...
Creators: Andrew Millar, Alexander Graf, Katja Baerenfaller, Willi Gruissem
Submitter: Andrew Millar
Investigations: Photoperiodic control of the Arabidopsis proteo...
Studies: Photoperiod-specific proteome data for Arabidopsis
Assays: Photoperiod proteomics
This Excel file lists the samples uploaded in PRIDE. The table “Table Sorted PP and Replicates” in the Excel file has all the relevant annotation.
There are more than the expected 168 samples in the PRIDE upload for the following reasons:
First, all of the measurements from the experiment had been uploaded, including files for measurements that were repeated because of problems during the MS run. These samples are not annotated in the table. Second, we had included 4 Gold Standard samples (2 ...
Creators: Alexander Graf, Katja Baerenfaller, Willi Gruissem
Submitter: Andrew Millar
Investigations: Photoperiodic control of the Arabidopsis proteo...
Studies: Photoperiod-specific proteome data for Arabidopsis
Assays: Photoperiod proteomics
Mean and standard deviation of protein abundances in 6h, 8h, 12h, and 18h photoperiods.
Creators: Daniel Seaton, Andrew Millar
Submitter: Daniel Seaton
Results of the statistical analysis, identifying proteins that change in abundance significantly across photoperiods.
Creators: Daniel Seaton, Andrew Millar
Submitter: Daniel Seaton
Investigations: Photoperiodic control of the Arabidopsis proteo...
Studies: Photoperiod-specific proteome data for Arabidopsis
Assays: Photoperiod proteomics
Abstract (Expand)
Authors: Daniel Seaton, Alexander Graf, Katja Baerenfaller, Mark Stitt, Andrew Millar, Wilhelm Gruissem
Date Published: No date defined
Publication Type: Not specified
DOI: 10.1101/182071
Citation: Photoperiodic control of the Arabidopsis proteome reveals a translational coincidence mechanism