Models
What is a Model?Filters
Simplified model of the electron-transport chain(s) (ETC) of Escherichia coli and its regulation by ArcA and FNR. The goal is to demonstrate a hypothetical design principle in the regulatory structure (->partly qualitative parameter values). Oxygen is changed slowly (100% aerobiosis at 1000000 time units) thus the basis variable is not the time but the oxygen flux voxi.
Creator: Sebastian Henkel
Submitter: Sebastian Henkel
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: Not specified
An ODE model representing the metabolic network governing acid and solvent production by Clostridium acetobutylicum, incorporating the effect of pH upon gene regulation and subsequent end-product levels.
The zip file containes 4 models (in SBML), each representing slightly different experimental conditions.
Creators: Sara Jabbari, Sylvia Haus
Submitter: The JERM Harvester
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: Not specified
Creators: Jay Moore, David Hodgson, Veronica Armendarez, Emma Laing , Govind Chandra, Mervyn Bibb
Submitter: Jay Moore
Model type: Metabolic network
Model format: BioPAX
Environment: Not specified
Creator: Paul Heusden
Submitter: The JERM Harvester
Model type: Not specified
Model format: Not specified
Environment: Not specified
The model can simulate the the dynamics of sigB dependent transcription at the transition to starvation. It is was developed along the comic in 'sigB-activation-comic_vol1'. Parameters were partly taken from Delumeau et al., 2002, J. Bact. and Igoshin et al., 2007, JMB. Parameter estimation was performed using experimental data from '0804_shake-flask'. Use the .m-file with matlab as: % reading initial conditions from the file: inic = sigb_model_liebal;
% performing the simulation: [t,y] = ...
Creator: Ulf Liebal
Submitter: Ulf Liebal
Model type: Ordinary differential equations (ODE)
Model format: Matlab package
Environment: Matlab
The model describes the Entner-Doudoroff pathway in Sulfolobus solfataricus under temperature variation. The package contains source code written in FORTRAN as well as binaries for Mac OSX, Linux, and Windows. If compiling from source code, a FORTRAN compiler is required. On-line versions of the model are also available at: http://bioinfo.ux.uis.no/sulfosys http://jjj.biochem.sun.ac.za/sysmo/projects/Sulfo-Sys/index.html
Creator: Peter Ruoff
Submitter: Peter Ruoff
Model type: Ordinary differential equations (ODE)
Model format: Not specified
Environment: Not specified
The agent-based model involves the representation of each individual molecule of interest as an autonomous agent that exists within the cellular environment and interacts with other molecules according to the biochemical situation. FLAME environmet has beem used for agent-based development. The FLAME framework is an enabling tool to create agent-based models that can be run on high performance computers (HPCs). Models are created based upon extended finite state machines that include message input ...
Creator: Afsaneh Maleki-Dizaji
Submitter: Afsaneh Maleki-Dizaji
Model type: Agent based modelling
Model format: Not specified
Environment: FLAME