African trypanosomes have emerged as promising unicellular model organisms for the next generation of systems biology. They offer unique advantages, due to their relative simplicity, the availability of all standard genomics techniques and a long history of quantitative research. Reproducible cultivation methods exist for morphologically and physiologically distinct life-cycle stages. The genome has been sequenced, and microarrays, RNA-interference and high-accuracy metabolomics are available. Furthermore, the availability of extensive kinetic data on all glycolytic enzymes has led to the early development of a complete, experiment-based dynamic model of an important biochemical pathway. Here we describe the achievements of trypanosome systems biology so far and outline the necessary steps towards the ambitious aim of creating a 'Silicon Trypanosome', a comprehensive, experiment-based, multi-scale mathematical model of trypanosome physiology. We expect that, in the long run, the quantitative modelling enabled by the Silicon Trypanosome will play a key role in selecting the most suitable targets for developing new anti-parasite drugs.
SEEK ID: https://fairdomhub.org/publications/43
PubMed ID: 20444304
Projects: SilicoTryp
Publication type: Not specified
Journal: Parasitology
Citation:
Date Published: 6th May 2010
Registered Mode: Not specified
Views: 6019
Created: 17th Aug 2010 at 11:21
Last updated: 8th Dec 2022 at 17:25
This item has not yet been tagged.
None