Biological problem addressed 'Metabolic Network'

Related assays

14 Assays visible to you, out of a total of 22
No description specified

Time-dependent simulations of the dynamic switch between acidogenesis and solventogenesis based on the metabolic network and pH-dependent regulation of the enzymes.

The dynamic model describes response of yeast metabolic network on metabolic perturbation (i.e. glucose-pulse). One compartmental ODE-based model of yeast anaerobic metabolism includes: glycolysis, pentose phosphate reactions, purine de novo synthesis pathway, purine salvage reactions, redox reactions and biomass growth. The model describes metabolic perturbation of steady state growing cells in chemostat.

  • Comparison of metabolic flux distribution in carbon core metabolism (EMP, PPP, TCA) of Bacillus subtilis under 3 different conditions: "salt-free" reference, "stress" chemostat, "osmoprotected" chemostat.
  • Model created using OpenFLUX and Microsoft Excel
  • Model computed using MatLAB

Metabolic network of S. pyogenes including primary metabolism, polysaccharide metabolism, purine and pyrimidine biosoynthesis, teichoic acid biosynthesis, fatty acid and phospholipid bioynthesis, amino acid metabolism, vitamins and cofactors

Metabolic network of Enterococcus faecalis including primary metabolism, polysaccharide metabolism, purine and pyrimidine biosoynthesis, teichoic acid biosynthesis, fatty acid and phospholipid bioynthesis, amino acid metabolism, vitamins and cofactors

The model describes the behaviour of E. coli in a stationary chemostat with different oxygen availability.

In vitro reconstitution of the PGK, GAPHD, TPI and FBPAase enzymes from S. solfataricus

Model prediction of the conversion of 3PG to fructose-6-phosphate and the gluconeogenic pathway intermediates. https://jjj.bio.vu.nl/models/experiments/kouril3_experiment-user/simulate

Genome scale metabolic model of Sulfolobus solfataricus specific scenario: modelling of L-fucose degradation pathways

The multi-compartmental metabolic network of Arabidopsis thaliana was reconstructed and optimized in order to explain growth stoichiometry of the plant both in light and in dark conditions. Balances and turnover of energy (ATP/ADP) and redox (NAD(P)H/NAD(P)) metabolites as well as proton in different compartments were estimated. The model showed that in light conditions, the plastid ATP balance depended on the relationship between fluxes through photorespiration and photosynthesis including both ...

A file combining all CpG sites from the differentially methylated regions (DMRs) of the control, t0, and t1 groups was generated. This combined file, containing methylation values extracted from the bedgraph files, was then used to create a PCA plot and a single heatmap for all CpG sites across the regions.

Submitter: Ayat Ismail

Biological problem addressed: Modelling analysis

Investigation: 1 hidden item

Study: 1 hidden item

Powered by
(v.1.16.0-pre)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH