Web page: http://www.ovgu.de/
Country: Germany
City: Magdeburg
Address:
Otto-von-Guericke-Universität Magdeburg
Universitätsplatz 2
39106 Magdeburg
Germany
Related items
Projects: ROBUSTYEAST
Institutions: Otto-von-Guericke University Magdeburg

Projects: SulfoSys - Biotec, ICYSB 2015 - International Practical Course in Systems Biology
Institutions: Otto-von-Guericke University Magdeburg, University of Gothenburg

Expertise: Signalling networks, dynamics of biological networks., Databases, Data analysis, Systems Biology, Model selection, Identifiability, Cellular Senescence, Cell Cycle, Dynamic Systems, Image processing, Image analysis, Parameter estimation
Tools: ODE, FACS, Model selection, Fluorescence and confocal microscopy, Identifiability analysis, Parameter estimation
My group investigates dynamic regulation and control mechanisms of cellular signal transduction networks by a combination of theoretical, experimental and computational methods. We seek to make sense of our biological data with the help of mathematical models, which ideally enable us to make valid predictions for new experiments, thereby generating novel biological insights.
Projects: ROBUSTYEAST
Institutions: Otto-von-Guericke University Magdeburg
The main objective of the ERANET proposal Systems Biology Applications - ERASysAPP (app = application = translational systems biology) is to promote multidimensional and complementary European systems biology projects, programmes and research initiatives on a number of selected research topics. Inter alia, ERASysAPP will initiate, execute and monitor a number of joint transnational calls on systems biology research projects with a particular focus on applications - or in other words so called ...
Projects: SysVirDrug, SysMilk, SysMetEx, MetApp, IMOMESIC, WineSys, CropClock, SYSTERACT, XyloCut, RootBook, ROBUSTYEAST, LEANPROT, ErasysApp Funders
Web page: https://www.cobiotech.eu/about-cobiotech/erasysapp
Projects that do not fall under current programmes.
Projects: Manchester Institute for Biotechnology, ICYSB 2015 - International Practical Course in Systems Biology, iRhythmics, INBioPharm, EmPowerPutida, Systo models, MycoSynVac - Engineering Mycoplasma pneumoniae as a broad-spectrum animal vaccine, Multiscale modelling of state transitions in the host-microbiome-brain network, Extremophiles metabolsim, NAD COMPARTMENTATION, Agro-ecological modelling, Bergen(Ziegler lab) project AF-NADase, NAMPT affinity, Stress granules, Modelling COVID-19 epidemics, Bio-crop, ORHIZON, Coastal Data, SASKit: Senescence-Associated Systems diagnostics Kit for cancer and stroke, hybrid sequencing, HOST-PAR, BioCreative VII, Boolean modeling of Parkinson disease map, Orphan cytochrome P450 20a1 CRISPR/Cas9 mutants and neurobehavioral phenotypes in zebrafish, Selective Destruction in Ageing, Viral Metagenomic, Synthetic biology in Synechococcus for bioeconomy applications (SynEco), testproject, SDBV ephemeral data exchanges, Test project, The BeeProject, PHENET, LiceVault, EbN1 Systems Biology, UMRPégase, DeCipher, Heat stress response of the red-tide dinoflagellate Prorocentrum cordatum, middle ear, datamgmt, Institut Pasteur's projects, The nucleus of Prorocentrum cordatum, qpcr, MRC-UNICORN, Test project for Sciender, qPCR, Artificial organelles_Pathogen digestion, Supplementary Information 2 associated with the manuscript entitled " Label free Mass spectrometry proteomics reveals different pathways modulated in THP-1 cells infected with therapeutic failure and drug resistance Leishmania infantum clinical isolates", FAIR Functional Enrichment, PTPN11 mutagenesis, Supplementary Information 2 associated with the manuscript entitled "Label free Mass spectrometry proteomics reveals different pathways modulated in THP-1 cells infected with therapeutic failure and drug resistance Leishmania infantum clinical isolates", iPlacenta- Placenta on a chip, Near Surface Wave-Coherent Measurements of Temperature and Humidity, A Meta-Analysis of Functional Recovery of Aphasia after Stroke by Acupuncture Combined with Language Rehabilitation Training, Phytoplankton phenology in the Bay of Biscay: using remote sensing to assess and raise awareness of climate change impacts on the sea, Master-BIDS, Endometriosis, Vitis Data Crop, MESI-STRAT Review, Establishing an innovative and transnational feed production approach for reduced climate impact of the aquaculture sector and future food supply, ARAX: a web-based computational reasoning system for translational biomedicine, Adaptation of Salmonella enterica, I AM FRONTIER
Web page: Not specified
e:Bio - Innovations Competition Systems Biology
Projects: SulfoSys - Biotec, SBEpo - Systems Biology of Erythropoietin
Web page: http://www.fona.de/en/14276
Microbial strains used in biotechnological industry need to produce their biotechnological products at high yield and at the same time they are desired to be robust to the intrinsic nutrient dynamics of large-scale bioreactors, most noticeably to transient limitations of carbon sources and oxygen. The engineering principles for robustness of metabolism to nutrient dynamics are however not yet well understood. The ROBUSTYEAST project aims to reveal these principles for microbial strain improvement ...
Programme: ERASysAPP
Public web page: Not specified
Organisms: Saccharomyces cerevisiae
Systems Biology studies the properties and phenotypes that emerge from the interaction of biomolecules where such properties are not obvious from those of the individual molecules. By connecting fields such as genomics, proteomics, bioinformatics, mathematics, cell biology, genetics, mathematics, engineering and computer sciences, Systems Biology enables discovery of yet unknown principles underlying the functioning of living cells. At the same time, testable and predictive models of complex ...
Programme: Independent Projects
Public web page: http://www.icysb.se/
Organisms: Saccharomyces cerevisiae
Within the e:Bio - Innovationswettbewerb Systembiologie (Federal Ministry of Education and Research (BMBF)), the SulfoSYSBIOTECH consortium (10 partners), aim to unravel the complexity and regulation of the carbon metabolic network of the thermoacidophilic archaeon Sulfolobus solfataricus (optimal growth at 80°C and pH 3) in order to provide new catalysts ‘extremozymes’ for utilization in White Biotechnology.
Based on the available S. solfataricus genome scale metabolic model (Ulas et al., 2012) ...
Programme: e:Bio
Public web page: http://www.sulfosys.com/
Organisms: Sulfolobus solfataricus