Hepatocytes contribute to residual glucose production in a mouse model for glycogen storage disease type Ia.


It is a long-standing enigma how glycogen storage disease (GSD) type I patients retain a limited capacity for endogenous glucose production despite the loss of glucose-6-phosphatase activity. Insight into the source of residual endogenous glucose production is of clinical importance given the risk of sudden death in these patients, but so far contradictory mechanisms have been proposed. We investigated glucose-6-phosphatase-independent endogenous glucose production in hepatocytes isolated from a liver-specific GSD Ia mouse model (L-G6pc(-/-) mice) and performed real-time analysis of hepatic glucose fluxes and glycogen metabolism in L-G6pc(-/-) mice using state-of-the-art stable isotope methodologies. Here we show that G6pc-deficient hepatocytes are capable of producing glucose. In vivo analysis of hepatic glucose metabolism revealed that the hepatic glucokinase flux was decreased by 95% in L-G6pc(-/-) mice. It also showed increased glycogen phosphorylase flux in L-G6pc(-/-) mice, which is coupled to the release of free glucose through glycogen debranching. Although the ex vivo activities of debranching enzyme and lysosomal acid maltase, two major hepatic alpha-glucosidases, were unaltered in L-G6pc(-/-) mice, pharmacological inhibition of alpha-glucosidase activity almost completely abolished residual glucose production by G6pc-deficient hepatocytes. CONCLUSION: Our data indicate that hepatocytes contribute to residual glucose production in GSD Ia. We show that alpha-glucosidase activity, i.e. glycogen debranching and/or lysosomal glycogen breakdown, contributes to residual glucose production by GSD Ia hepatocytes. A strong reduction in hepatic GCK flux in L-G6pc-/- mice furthermore limits the phosphorylation of free glucose synthesized by G6pc-deficient hepatocytes, allowing the release of glucose into the circulation. The almost complete abrogation of GCK flux in G6pc-deficient liver also explains the contradictory reports on residual glucose production in GSD Ia patients. (Hepatology 2017;66:2042-2054).

SEEK ID: https://fairdomhub.org/publications/389

PubMed ID: 28727166

Projects: PoLiMeR - Polymers in the Liver: Metabolism and Regulation

Publication type: Journal

Journal: Hepatology

Citation: Hepatology. 2017 Dec;66(6):2042-2054. doi: 10.1002/hep.29389. Epub 2017 Oct 30.

Date Published: 21st Jul 2017

Registered Mode: Not specified

Authors: B. S. Hijmans, A. Boss, T. H. van Dijk, M. Soty, H. Wolters, E. Mutel, A. K. Groen, T. G. J. Derks, G. Mithieux, A. Heerschap, D. J. Reijngoud, F. Rajas, M. H. Oosterveer

help Submitter

Views: 2008

Created: 10th Jan 2019 at 13:43

Last updated: 28th Jul 2020 at 18:41

help Tags

This item has not yet been tagged.

help Attributions


Powered by
Copyright © 2008 - 2022 The University of Manchester and HITS gGmbH

By continuing to use this site you agree to the use of cookies