Publications

What is a Publication?
30 Publications visible to you, out of a total of 30

Abstract

Not specified

Authors: Theresa Kouril, Craig October, Stephanie Hollocks, Christoff Odendaal, David D. van Niekerk, Jacky L. Snoep

Date Published: 1st Sep 2023

Publication Type: Journal

Abstract (Expand)

The oxidative Weimberg pathway for the five-step pentose degradation to α-ketoglutarate is a key route for sustainable bioconversion of lignocellulosic biomass to added-value products and biofuels. The oxidative pathway from Caulobacter crescentus has been employed in in-vivo metabolic engineering with intact cells and in in-vitro enzyme cascades. The performance of such engineering approaches is often hampered by systems complexity, caused by non-linear kinetics and allosteric regulatory mechanisms. Here we report an iterative approach to construct and validate a quantitative model for the Weimberg pathway. Two sensitive points in pathway performance have been identified as follows: (1) product inhibition of the dehydrogenases (particularly in the absence of an efficient NAD+ recycling mechanism) and (2) balancing the activities of the dehydratases. The resulting model is utilized to design enzyme cascades for optimized conversion and to analyse pathway performance in C. cresensus cell- free extracts.

Authors: Lu Shen, Martha Kohlhaas, Junichi Enoki, Roland Meier, Bernhard Schönenberger, Roland Wohlgemuth, Robert Kourist, Felix Niemeyer, David van Niekerk, Christopher Bräsen, Jochen Niemeyer, Jacky Snoep, Bettina Siebers

Date Published: 1st Dec 2020

Publication Type: Not specified

Abstract (Expand)

Computational systems biology involves integrating heterogeneous datasets in order to generate models. These models can assist with understanding and prediction of biological phenomena. Generating datasets and integrating them into models involves a wide range of scientific expertise. As a result these datasets are often collected by one set of researchers, and exchanged with others researchers for constructing the models. For this process to run smoothly the data and models must be FAIR-findable, accessible, interoperable, and reusable. In order for data and models to be FAIR they must be structured in consistent and predictable ways, and described sufficiently for other researchers to understand them. Furthermore, these data and models must be shared with other researchers, with appropriately controlled sharing permissions, before and after publication. In this chapter we explore the different data and model standards that assist with structuring, describing, and sharing. We also highlight the popular standards and sharing databases within computational systems biology.

Authors: N. J. Stanford, M. Scharm, P. D. Dobson, M. Golebiewski, M. Hucka, V. B. Kothamachu, D. Nickerson, S. Owen, J. Pahle, U. Wittig, D. Waltemath, C. Goble, P. Mendes, J. Snoep

Date Published: 12th Oct 2019

Publication Type: Journal

Abstract (Expand)

Life science researchers use computational models to articulate and test hypotheses about the behavior of biological systems. Semantic annotation is a critical component for enhancing the interoperability and reusability of such models as well as for the integration of the data needed for model parameterization and validation. Encoded as machine-readable links to knowledge resource terms, semantic annotations describe the computational or biological meaning of what models and data represent. These annotations help researchers find and repurpose models, accelerate model composition and enable knowledge integration across model repositories and experimental data stores. However, realizing the potential benefits of semantic annotation requires the development of model annotation standards that adhere to a community-based annotation protocol. Without such standards, tool developers must account for a variety of annotation formats and approaches, a situation that can become prohibitively cumbersome and which can defeat the purpose of linking model elements to controlled knowledge resource terms. Currently, no consensus protocol for semantic annotation exists among the larger biological modeling community. Here, we report on the landscape of current annotation practices among the COmputational Modeling in BIology NEtwork community and provide a set of recommendations for building a consensus approach to semantic annotation.

Authors: Maxwell Lewis Neal, Matthias König, David Nickerson, Göksel Mısırlı, Reza Kalbasi, Andreas Dräger, Koray Atalag, Vijayalakshmi Chelliah, Michael T Cooling, Daniel L Cook, Sharon Crook, Miguel de Alba, Samuel H Friedman, Alan Garny, John H Gennari, Padraig Gleeson, Martin Golebiewski, Michael Hucka, Nick Juty, Chris Myers, Brett G Olivier, Herbert M Sauro, Martin Scharm, Jacky L Snoep, Vasundra Touré, Anil Wipat, Olaf Wolkenhauer, Dagmar Waltemath

Date Published: 1st Mar 2019

Publication Type: Journal

Abstract (Expand)

Abstract The response of oscillatory systems to external perturbations is crucial for emergent properties such as synchronisation and phase locking and can be quantified in a phase response curve (PRC).hase response curve (PRC). In individual, oscillating yeast cells, we characterised experimentally the phase response of glycolytic oscillations for external acetaldehyde pulses and followed the transduction of the perturbation through the system. Subsequently, we analysed the control of the relevant system components in a detailed mechanistic model. The observed responses are interpreted in terms of the functional coupling and regulation in the reaction network. We find that our model quantitatively predicts the phase-dependent phase shift observed in the experimental data. The phase shift is in agreement with an adaptation leading to synchronisation with an external signal. Our model analysis establishes that phosphofructokinase plays a key role in the phase shift dynamics as shown in the PRC and adaptation time to external perturbations. Specific mechanism-based interventions, made possible through such analyses of detailed models, can improve upon standard trial and error methods, e.g. melatonin supplementation to overcome jet-lag, which are error-prone, specifically, since the effects are phase dependent and dose dependent. The models by Gustavsson and Goldbeter discussed in the text can be obtained from the JWS Online simulation database: (https://jjj.bio.vu.nl/models/gustavsson5 and https://jjj.bio.vu.nl/models/goldbeter1)

Authors: David D. van Niekerk, Anna-Karin Gustavsson, Martin Mojica-Benavides, Caroline B. Adiels, Mattias Goksör, Jacky L. Snoep

Date Published: 31st Jan 2019

Publication Type: Journal

Abstract (Expand)

The progression of castration resistant prostate cancer (CRPC) is driven by the intratumoral conversion of adrenal androgen precursors to potent androgens. The expression of aldo-keto reductase 1C3 (AKR1C3), which catalyses the reduction of weak androgens to more potent androgens, is significantly increased in CRPC tumours. The oxidation of androgens to their inactive form is catalysed by 17β-hydroxysteroid dehydrogenase type 2 (17βHSD2), but little attention is given to the expression levels of this enzyme. In this study, we show that the 11-oxygenated androgen precursors of adrenal origin are the preferred substrate for AKR1C3. In particular we show that the enzymatic efficiency of AKR1C3 is 8- and 24-fold greater for 11-ketoandrostenedione than for the classic substrates androstenedione and 5α-androstanedione, respectively. Using three independent experimental systems and a computational model we subsequently show that increased ratios of AKR1C3:17βHSD2 sig- nificantly favours the flux through the 11-oxygenated androgen pathway as compared to the classical or 5α- androstanedione pathways. Our findings reveal that the flux through the classical and 5α-androstanedione pathways are limited by the low catalytic efficiently of AKR1C3 towards classical androgens combined with the high catalytic efficiency of 17βHSD2, and that the expression of the oxidative enzyme therefore plays a vital role in determining the steady state concentration of active androgens. Using microarray data from prostate tissue we confirm that the AKR1C3:17βHSD2 ratio is significantly increased in patients undergoing androgen deprivation therapy as compared to benign tissue, and further increased in patients with CRPC. Taken together this study therefore demonstrates that the ratio of AKR1C3:17βHSD2 is more important than AKR1C3 expression alone in determining intratumoral androgen levels and that 11-oxygenated androgens may play a bigger role in CRPC than previously anticipated.

Authors: Monique Barnard, Jonathan L. Quanson, Elahe Mostaghel, Elzette Pretorius, Jacky L. Snoep, Karl-Heinz Storbeck

Date Published: 1st Oct 2018

Publication Type: Not specified

Abstract (Expand)

In (hyper)thermophilic organisms metabolic processes have to be adapted to function optimally at high temperature. We compared the gluconeogenic conversion of 3-phosphoglycerate via 1,3-bisphosphoglycerate to glyceraldehyde-3-phosphate at 30 degrees C and at 70 degrees C. At 30 degrees C it was possible to produce 1,3-bisphosphoglycerate from 3-phosphoglycerate with phosphoglycerate kinase, but at 70 degrees C, 1,3-bisphosphoglycerate was dephosphorylated rapidly to 3-phosphoglycerate, effectively turning the phosphoglycerate kinase into a futile cycle. When phosphoglycerate kinase was incubated together with glyceraldehyde 3-phosphate dehydrogenase it was possible to convert 3-phosphoglycerate to glyceraldehyde 3-phosphate, both at 30 degrees C and at 70 degrees C, however, at 70 degrees C only low concentrations of product were observed due to thermal instability of glyceraldehyde 3-phosphate. Thus, thermolabile intermediates challenge central metabolic reactions and require special adaptation strategies for life at high temperature.

Authors: T. Kouril, J. J. Eicher, B. Siebers, J. L. Snoep

Date Published: 7th Oct 2017

Publication Type: Not specified

Abstract (Expand)

Tissues use feedback circuits in which cells send signals to each other to control their growth and survival. We show that such feed- back circuits are inherently unstable to mutants that misread the signal level: Mutants have a growth advantage to take over the tissue, and cannot be eliminated by known cell-intrinsic mecha- nisms. To resolve this, we propose that tissues have biphasic responses in which the signal is toxic at both high and low levels, such as glucotoxicity of beta cells, excitotoxicity in neurons, and toxicity of growth factors to T cells. This gives most of these mutants a frequency-dependent selective disadvantage, which leads to their elimination. However, the biphasic mechanisms create a new unstable fixed point in the feedback circuit beyond which runaway processes can occur, leading to risk of diseases such as diabetes and neurodegenerative disease. Hence, glucotoxicity, which is a dangerous cause of diabetes, may have a protective anti- mutant effect. Biphasic responses in tissues may provide an evolu- tionary stable strategy that avoids invasion by commonly occurring mutants, but at the same time cause vulnerability to disease.

Authors: Omer Karin, Uri Alon

Date Published: 26th Jun 2017

Publication Type: Not specified

Abstract (Expand)

The FAIRDOMHub is a repository for publishing FAIR (Findable, Accessible, Interoperable and Reusable) Data, Operating procedures and Models (https://fairdomhub.org/) for the Systems Biology community. It is a web-accessible repository for storing and sharing systems biology research assets. It enables researchers to organize, share and publish data, models and protocols, interlink them in the context of the systems biology investigations that produced them, and to interrogate them via API interfaces. By using the FAIRDOMHub, researchers can achieve more effective exchange with geographically distributed collaborators during projects, ensure results are sustained and preserved and generate reproducible publications that adhere to the FAIR guiding principles of data stewardship.

Authors: K. Wolstencroft, O. Krebs, J. L. Snoep, N. J. Stanford, F. Bacall, M. Golebiewski, R. Kuzyakiv, Q. Nguyen, S. Owen, S. Soiland-Reyes, J. Straszewski, D. D. van Niekerk, A. R. Williams, L. Malmstrom, B. Rinn, W. Muller, C. Goble

Date Published: 4th Jan 2017

Publication Type: Journal

Abstract (Expand)

The FAIRDOMHub is a repository for publishing FAIR (Findable, Accessible, Interoperable and Reusable) Data, Operating procedures and Models (https://fairdomhub.org/) for the Systems Biology community. It is a web-accessible repository for storing and sharing systems biology research assets. It enables researchers to organize, share and publish data, models and protocols, interlink them in the context of the systems biology investigations that produced them, and to interrogate them via API interfaces. By using the FAIRDOMHub, researchers can achieve more effective exchange with geographically distributed collaborators during projects, ensure results are sustained and preserved and generate reproducible publications that adhere to the FAIR guiding principles of data stewardship.

Authors: K. Wolstencroft, O. Krebs, J. L. Snoep, N. J. Stanford, F. Bacall, M. Golebiewski, R. Kuzyakiv, Q. Nguyen, S. Owen, S. Soiland-Reyes, J. Straszewski, D. D. van Niekerk, A. R. Williams, L. Malmstrom, B. Rinn, W. Muller, C. Goble

Date Published: 4th Jan 2017

Publication Type: Journal

Abstract (Expand)

Organisms use circadian clocks to generate 24-h rhythms in gene expression. However, the clock can interact with other pathways to generate shorter period oscillations. It remains unclear how these different frequencies are generated. Here, we examine this problem by studying the coupling of the clock to the alternative sigma factor sigC in the cyanobacterium Synechococcus elongatus. Using single-cell microscopy, we find that psbAI, a key photosyn- thesis gene regulated by both sigC and the clock, is activated with two peaks of gene expression every circadian cycle under constant low light. This two-peak oscillation is dependent on sigC, without which psbAI rhythms revert to one oscillatory peak per day. We also observe two circadian peaks of elongation rate, which are dependent on sigC, suggesting a role for the frequency doubling in modulating growth. We propose that the two-peak rhythm in psbAI expression is generated by an incoherent feedforward loop between the clock, sigC and psbAI. Modelling and experiments suggest that this could be a general network motif to allow frequency doubling of outputs.

Authors: Bruno MC Martins, Arijit K Das, Liliana Antunes, James CW Locke

Date Published: 22nd Dec 2016

Publication Type: Not specified

Abstract (Expand)

Glycolysis is the main pathway for ATP production in the malaria parasite Plasmodium falciparum and essential for its survival. Following a sensitivity analysis of a detailed kinetic model for glycolysis in the parasite, the glucose transport reaction was identified as the step whose activity needed to be inhibited to the least extent to result in a 50% reduction in glycolytic flux. In a subsequent inhibitor titration with cytochalasin B, we confirmed the model analysis experimentally and measured a flux control coefficient of 0.3 for the glucose transporter. In addition to the glucose transporter, the glucokinase and phosphofructokinase had high flux control coefficients, while for the ATPase a small negative flux control coefficient was predicted. In a broader comparative analysis of glycolytic models, we identified a weakness in the P. falciparum pathway design with respect to stability towards perturbations in the ATP demand.

Authors: David D. van Niekerk, Gerald P. Penkler, Francois du Toit, Jacky L. Snoep

Date Published: 1st Feb 2016

Publication Type: Not specified

Abstract (Expand)

We propose a hierarchical modelling approach to construct models for disease states at the whole-body level. Such models can simulate effects of drug-induced inhibition of reaction steps on the whole-body physiology. We illustrate the approach for glucose metabolism in malaria patients, by merging two detailed kinetic models for glucose metabolism in the parasite Plasmodium falciparum and the human red blood cell with a coarse-grained model for whole-body glucose metabolism. In addition we use a genome-scale metabolic model for the parasite to predict amino acid production profiles by the malaria parasite that can be used as a complex biomarker.

Authors: J. L. Snoep, K. Green, J. Eicher, D. C. Palm, G. Penkler, F. du Toit, N. Walters, R. Burger, H. V. Westerhoff, D. D. van Niekerk

Date Published: 27th Nov 2015

Publication Type: Not specified

Abstract (Expand)

The enzymes in the Embden–Meyerhof–Parnas pathway of Plasmodium falciparum trophozoites were kinetically characterized and their integrated activities analyzed in a mathematical model. For validation of the model, we compared model predictions for steady-state fluxes and metabolite concentrations of the hexose phosphates with experimental values for intact parasites. The model, which is completely based on kinetic parameters that were measured for the individual enzymes, gives an accurate prediction of the steady-state fluxes and intermediate concentrations. This is the first detailed kinetic model for glucose metabolism in P. falciparum, one of the most prolific malaria-causing protozoa, and the high predictive power of the model makes it a strong tool for future drug target identification studies. The modelling workflow is transparent and reproducible, and completely documented in the SEEK platform, where all experimental data and model files are available for download.

Authors: Gerald Penkler, Francois du Toit, Waldo Adams, Marina Rautenbach, Daniel C. Palm, David D. van Niekerk, Jacky L. Snoep

Date Published: 1st Apr 2015

Publication Type: Not specified

Abstract

Not specified

Authors: Anna-Karin Gustavsson, David D. van Niekerk, Caroline B. Adiels, Bob Kooi, Mattias Goksör, Jacky L. Snoep

Date Published: 1st Jun 2014

Publication Type: Not specified

Abstract

Not specified

Authors: Anna-Karin Gustavsson, David D. van Niekerk, Caroline B. Adiels, Mattias Goksör, Jacky L. Snoep

Date Published: 3rd Jan 2014

Publication Type: Not specified

Abstract (Expand)

Four enzymes of the gluconeogenic pathway in Sulfolobus solfataricus were purified and kinetically characterized. The enzymes were reconstituted in vitro to quantify the contribution of temperature instability of the pathway intermediates to carbon loss from the system. The reconstituted system, consisting of phosphoglycerate kinase, glyceraldehyde 3-phosphate dehydrogenase, triose phosphate isomerase and the fructose 1,6-bisphosphate aldolase/ phosphatase maintained a constant consumption rate of 3-phosphoglycerate and production of fructose 6-phosphate over a 1 hour period. Cofactors ATP and NADPH were regenerated via pyruvate kinase and glucose dehydrogenase. A mathematical model was constructed on the basis of the kinetics of the purified enzymes and the measured half-life times of the pathway intermediates. The model quantitatively predicted the systems uxes and metabolite concentrations. Relative enzyme concentrations were chosen such that half the carbon in the system was lost due to degradation of the thermolabile intermediates dihydroxyacetone phosphate, glyceraldehyde 3-phosphate and 1,3 bisphosphoglycerate, indicating that intermediate instability at high temperature can significantly affect pathway efficiency. This article is protected by copyright. All rights reserved.

Authors: , Dominik Esser, Julia Kort, , ,

Date Published: 20th Jul 2013

Publication Type: Not specified

Abstract (Expand)

The increase in volume and complexity of biological data has led to increased requirements to reuse that data. Consistent and accurate metadata is essential for this task, creating new challenges in semantic data annotation and in the constriction of terminologies and ontologies used for annotation. The BioSharing community are developing standards and terminologies for annotation, which have been adopted across bioinformatics, but the real challenge is to make these standards accessible to laboratory scientists. Widespread adoption requires the provision of tools to assist scientists whilst reducing the complexities of working with semantics. This paper describes unobtrusive ‘stealthy’ methods for collecting standards compliant, semantically annotated data and for contributing to ontologies used for those annotations. Spreadsheets are ubiquitous in laboratory data management. Our spreadsheet-based RightField tool enables scientists to structure information and select ontology terms for annotation within spreadsheets, producing high quality, consistent data without changing common working practices. Furthermore, our Populous spreadsheet tool proves effective for gathering domain knowledge in the form of Web Ontology Language (OWL) ontologies. Such a corpus of structured and semantically enriched knowledge can be extracted in Resource Description Framework (RDF), providing further means for searching across the content and contributing to Open Linked Data (http://linkeddata.org/)

Authors: , , Matthew Horridge, Simon Jupp, , , , , Robert Stevens,

Date Published: 1st Feb 2013

Publication Type: Journal

Abstract

Not specified

Authors: Anna-Karin Gustavsson, David D. van Niekerk, Caroline B. Adiels, Franco B. du Preez, Mattias Goksör, Jacky L. Snoep

Date Published: 1st Aug 2012

Publication Type: Not specified

Abstract (Expand)

An existing detailed kinetic model for the steady-state behavior of yeast glycolysis was tested for its ability to simulate dynamic behavior. Using a small subset of experimental data, the original model was adapted by adjusting its parameter values in three optimization steps. Only small adaptations to the original model were required for realistic simulation of experimental data for limit-cycle oscillations. The greatest changes were required for parameter values for the phosphofructokinase reaction. The importance of ATP for the oscillatory mechanism and NAD(H) for inter-and intra-cellular communications and synchronization was evident in the optimization steps and simulation experiments. In an accompanying paper [du Preez F et al. (2012) FEBS J doi:10.1111/j.1742-4658.2012.08658.x], we validate the model for a wide variety of experiments on oscillatory yeast cells. The results are important for re-use of detailed kinetic models in modular modeling approaches and for approaches such as that used in the Silicon Cell initiative. Database The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.biochem.sun.ac.za/database/dupreez/index.html.

Authors: , David D van Niekerk, Bob Kooi, Johann M Rohwer,

Date Published: 21st Jun 2012

Publication Type: Not specified

Abstract (Expand)

In an accompanying paper [du Preez et al., (2012) FEBS J doi: 10.1111/j.1742-4658.2012.08665.x], we adapt an existing kinetic model for steady-state yeast glycolysis to simulate limit-cycle oscillations. Here we validate the model by testing its capacity to simulate a wide range of experiments on dynamics of yeast glycolysis. In addition to its description of the oscillations of glycolytic intermediates in intact cells and the rapid synchronization observed when mixing out-of-phase oscillatory cell populations (see accompanying paper), the model was able to predict the Hopf bifurcation diagram with glucose as the bifurcation parameter (and one of the bifurcation points with cyanide as the bifurcation parameter), the glucose- and acetaldehyde-driven forced oscillations, glucose and acetaldehyde quenching, and cell-free extract oscillations (including complex oscillations and mixed-mode oscillations). Thus, the model was compliant, at least qualitatively, with the majority of available experimental data for glycolytic oscillations in yeast. To our knowledge, this is the first time that a model for yeast glycolysis has been tested against such a wide variety of independent data sets. Database The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.biochem.sun.ac.za/database/dupreez/index.html.

Authors: , David D van Niekerk,

Date Published: 13th Jun 2012

Publication Type: Not specified

Abstract (Expand)

Yeast glycolytic oscillations have been studied since the 1950s in cell-free extracts and intact cells. For intact cells, sustained oscillations have so far only been observed at the population level, i.e. for synchronized cultures at high biomass concentrations. Using optical tweezers to position yeast cells in a microfluidic chamber, we were able to observe sustained oscillations in individual isolated cells. Using a detailed kinetic model for the cellular reactions, we simulated the heterogeneity in the response of the individual cells, assuming small differences in a single internal parameter. This is the first time that sustained limit-cycle oscillations have been demonstrated in isolated yeast cells. Database The mathematical model described here has been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.biochem.sun.ac.za/database/gustavsson/index.html free of charge.

Authors: Anna-Karin Gustavsson, David D van Niekerk, Caroline B Adiels, , Mattias Goksör,

Date Published: 23rd May 2012

Publication Type: Not specified

Abstract (Expand)

RightField is a Java application that provides a mechanism for embedding ontology annotation support for scientific data in Microsoft Excel or Open Office spreadsheets. The result is semantic annotation by stealth, with an annotation process that is less error-prone, more efficient, and more consistent with community standards. By automatically generating RDF statements for each cell a rich, Linked Data querying environment allows scientists to search their data and other Linked Data resources interchangeably, and caters for queries across heterogeneous spreadsheets. RightField has been developed for Systems Biologists but has since adopted more widely. It is open source (BSD license) and freely available from http://www.rightfield.org.uk

Authors: Katy Wolstencroft, Stuart Owen, Matthew Horridge, Wolfgang Mueller, Finn Bacall, Jacky Snoep, Franco du Preez, Quyen Nguyen, Olga Krebs, Carole Goble

Date Published: 2012

Publication Type: Journal

Abstract (Expand)

The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools.

Authors: Dagmar Waltemath, Richard Adams, Frank T Bergmann, Michael Hucka, Fedor Kolpakov, Andrew K Miller, Ion I Moraru, David Nickerson, Sven Sahle, , Nicolas Le Novère

Date Published: 15th Dec 2011

Publication Type: Not specified

Abstract (Expand)

One of the main pathways for the detoxification of reactive metabolites in the liver involves glutathione conjugation. Metabolic profiling studies have shown paradoxical responses in glutathione-related biochemical pathways. One of these is the increase in 5-oxoproline and ophthalmic acid concentrations with increased dosage of paracetamol. Experimental studies have thus far failed to resolve these paradoxes and the robustness of how these proposed biomarkers correlate with liver glutathione levels has been questioned. To better understand how these biomarkers behave in the glutathione system a kinetic model of this pathway was made. By using metabolic control analysis and by simulating biomarker levels under a variety of conditions, we found that 5-oxoproline and ophthalmic acid concentrations may not only depend on the glutathione but also on the methionine status of the cell. We show that neither of the two potential biomarkers are reliable on their own since they need additional information about the methionine status of the system to relate them uniquely to intracellular glutathione concentration. However, when both biomarkers are measured simultaneously a direct inference of the glutathione concentration can be made, irrespective of the methionine concentration in the system.

Authors: Suzanne Geenen, , Michael Reed, H Frederik Nijhout, J Gerry Kenna, Ian D Wilson, ,

Date Published: 24th Aug 2011

Publication Type: Not specified

Abstract (Expand)

MOTIVATION: In the Life Sciences, guidelines, checklists and ontologies describing what metadata is required for the interpretation and reuse of experimental data are emerging. Data producers, however, may have little experience in the use of such standards and require tools to support this form of data annotation. RESULTS: RightField is an open source application that provides a mechanism for embedding ontology annotation support for Life Science data in Excel spreadsheets. Individual cells, columns or rows can be restricted to particular ranges of allowed classes or instances from chosen ontologies. The RightField-enabled spreadsheet presents selected ontology terms to the users as a simple drop-down list, enabling scientists to consistently annotate their data. The result is 'semantic annotation by stealth', with an annotation process that is less error-prone, more efficient, and more consistent with community standards. AVAILABILITY AND IMPLEMENTATION: RightField is open source under a BSD license and freely available from http://www.rightfield.org.uk

Authors: , , Matthew Horridge, , , , ,

Date Published: 15th Jul 2011

Publication Type: Journal

Abstract (Expand)

The development of disease may be characterized as a pathological shift of homeostasis; the main goal of contemporary drug treatment is, therefore, to return the pathological homeostasis back to the normal physiological range. From the view point of systems biology, homeostasis emerges from the interactions within the network of biomolecules (e.g. DNA, mRNA, proteins), and, hence, understanding how drugs impact upon the entire network should improve their efficacy at returning the network (body) to physiological homeostasis. Large, mechanism-based computer models, such as the anticipated human whole body models (silicon or virtual human), may help in the development of such network-targeting drugs. Using the philosophical concept of weak and strong emergence, we shall here take a more general look at the paradigm of network-targeting drugs, and propose our approaches to scale the strength of strong emergence. We apply these approaches to several biological examples and demonstrate their utility to reveal principles of bio-modeling. We discuss this in the perspective of building the silicon human.

Authors: Alexey Kolodkin, Fred C Boogerd, Nick Plant, Frank J Bruggeman, Valeri Goncharuk, Jeantine Lunshof, Rafael Moreno-Sanchez, Nilgun Yilmaz, Barbara M Bakker, , Rudi Balling,

Date Published: 16th Jun 2011

Publication Type: Not specified

Abstract (Expand)

The topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of ‘design’ aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic models of increasing complexity, calculations show how these features correspond to potentially important design principles, e.g.: (i) cytosolic ‘nuclear’ receptor may shuttle signal molecules to the nucleus, (ii) the active export of NRs may ensure that there is sufficient receptor protein to capture ligand at the cytoplasmic membrane, (iii) a three conveyor belts design dissipating GTP-free energy, greatly aids response, (iv) the active export of importins may prevent sequestration of NRs by importins in the nucleus and (v) the unspecific nature of the nuclear pore may ensure signal-flux robustness. In addition, the models developed are suitable for implementation in specific cases of NR-mediated signaling, to predict individual receptor functions and differential sensitivity toward physiological and pharmacological ligands.

Authors: Alexey N Kolodkin, Frank J Bruggeman, Nick Plant, Martijn J Moné, Barbara M Bakker, Moray J Campbell, Johannes P T M van Leeuwen, Carsten Carlberg, Jacky L Snoep, Hans V Westerhoff

Date Published: 21st Dec 2010

Publication Type: Not specified

Abstract (Expand)

UNLABELLED: In an accompanying paper [du Preez et al., (2012) FEBS J279, 2810-2822], we adapt an existing kinetic model for steady-state yeast glycolysis to simulate limit-cycle oscillations. Here we validate the model by testing its capacity to simulate a wide range of experiments on dynamics of yeast glycolysis. In addition to its description of the oscillations of glycolytic intermediates in intact cells and the rapid synchronization observed when mixing out-of-phase oscillatory cell populations (see accompanying paper), the model was able to predict the Hopf bifurcation diagram with glucose as the bifurcation parameter (and one of the bifurcation points with cyanide as the bifurcation parameter), the glucose- and acetaldehyde-driven forced oscillations, glucose and acetaldehyde quenching, and cell-free extract oscillations (including complex oscillations and mixed-mode oscillations). Thus, the model was compliant, at least qualitatively, with the majority of available experimental data for glycolytic oscillations in yeast. To our knowledge, this is the first time that a model for yeast glycolysis has been tested against such a wide variety of independent data sets. DATABASE: The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.biochem.sun.ac.za/database/dupreez/index.html.

Authors: F. B. du Preez, D. D. van Niekerk, J. L. Snoep

Date Published: No date defined

Publication Type: Not specified

Abstract (Expand)

UNLABELLED: An existing detailed kinetic model for the steady-state behavior of yeast glycolysis was tested for its ability to simulate dynamic behavior. Using a small subset of experimental data, the original model was adapted by adjusting its parameter values in three optimization steps. Only small adaptations to the original model were required for realistic simulation of experimental data for limit-cycle oscillations. The greatest changes were required for parameter values for the phosphofructokinase reaction. The importance of ATP for the oscillatory mechanism and NAD(H) for inter-and intra-cellular communications and synchronization was evident in the optimization steps and simulation experiments. In an accompanying paper [du Preez F et al. (2012) FEBS J279, 2823-2836], we validate the model for a wide variety of experiments on oscillatory yeast cells. The results are important for re-use of detailed kinetic models in modular modeling approaches and for approaches such as that used in the Silicon Cell initiative. DATABASE: The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.biochem.sun.ac.za/database/dupreez/index.html.

Authors: F. B. du Preez, D. D. van Niekerk, B. Kooi, J. M. Rohwer, J. L. Snoep

Date Published: No date defined

Publication Type: Not specified

Powered by
(v.1.16.0-pre)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH