SEEK ID: https://fairdomhub.org/people/355
Location: United Kingdom
ORCID: Not specified
Joined: 5th Oct 2010
Expertise: Glycolysis, Limit cycle oscillations
Tools: Java, Mathematica
Related items
- Programmes (1)
- Projects (1)
- Institutions (1)
- Assays (0+1)
- Data files (4+7)
- Models (17+5)
- Publications (6)
- Presentations (2)
SysMO is a European transnational funding and research initiative on "Systems Biology of Microorganisms".
The goal pursued by SysMO was to record and describe the dynamic molecular processes going on in unicellular microorganisms in a comprehensive way and to present these processes in the form of computerized mathematical models.
Systems biology will raise biomedical and biotechnological research to a new quality level and contribute markedly to progress in understanding. Pooling European research ...
Projects: BaCell-SysMO, COSMIC, SUMO, KOSMOBAC, SysMO-LAB, PSYSMO, SCaRAB, MOSES, TRANSLUCENT, STREAM, SulfoSys, SysMO DB, SysMO Funders, SilicoTryp, Noisy-Strep
Web page: http://sysmo.net/
The main objectives of SysMO-DB are to: facilitate the web-based exchange of data between research groups within- and inter- consortia, and to provide an integrated platform for the dissemination of the results of the SysMO projects to the scientific community. We aim to devise a progressive and scalable solution to the data management needs of the SysMO initiative, that:
- facilitates and maximises the potential for data exchange between SysMO research groups;
- maximises the ‘shelf life’ and ...
Programme: SysMO
Public web page: http://www.sysmo-db.org/
Organisms: Not specified
Creators: Franco du Preez, Jacky Snoep
Submitter: Franco du Preez
Creators: Franco du Preez, Jacky Snoep
Submitter: Franco du Preez
Investigations: Yeast Glycolytic Oscillations
Creators: Franco du Preez, Jacky Snoep
Submitter: Franco du Preez
Creator: Franco du Preez
Submitter: Franco du Preez
Investigations: Yeast Glycolytic Oscillations
Studies: Sustained glycolytic oscillations in individual...
Assays: 1 hidden item
Using optical tweezers to position yeast cells in a microfluidic chamber, we were able to observe sustained oscillations in individual isolated cells. Using a detailed kinetic model for the cellular reactions, we simulated the heterogeneity in the response of the individual cells, assuming small differences in a single internal parameter. By operating at two different flow rates per experiment, we observe four of categories of cell behaviour. The present model (gustavsson4) predicts the steady-state ...
Creators: Franco du Preez, Jacky Snoep, Dawie van Niekerk
Submitter: Franco du Preez
Model type: Ordinary differential equations (ODE)
Model format: Not specified
Environment: JWS Online
Organism: Saccharomyces cerevisiae
Investigations: Yeast Glycolytic Oscillations
Using optical tweezers to position yeast cells in a microfluidic chamber, we were able to observe sustained oscillations in individual isolated cells. Using a detailed kinetic model for the cellular reactions, we simulated the heterogeneity in the response of the individual cells, assuming small differences in a single internal parameter. By operating at two different flow rates per experiment, we observe four of categories of cell behaviour. The present model (gustavsson1) predicts the limit ...
Creators: Franco du Preez, Jacky Snoep, David D van Niekerk
Submitter: Franco du Preez
Model type: Ordinary differential equations (ODE)
Model format: Not specified
Environment: JWS Online
Organism: Saccharomyces cerevisiae
Investigations: Yeast Glycolytic Oscillations
Using optical tweezers to position yeast cells in a microfluidic chamber, we were able to observe sustained oscillations in individual isolated cells. Using a detailed kinetic model for the cellular reactions, we simulated the heterogeneity in the response of the individual cells, assuming small differences in a single internal parameter. By operating at two different flow rates per experiment, we observe four of categories of cell behaviour. The present model (gustavsson2) predicts the damped ...
Creators: Franco du Preez, Jacky Snoep, David D van Niekerk
Submitter: Franco du Preez
Model type: Ordinary differential equations (ODE)
Model format: Not specified
Environment: JWS Online
Organism: Saccharomyces cerevisiae
Investigations: Yeast Glycolytic Oscillations
Using optical tweezers to position yeast cells in a microfluidic chamber, we were able to observe sustained oscillations in individual isolated cells. Using a detailed kinetic model for the cellular reactions, we simulated the heterogeneity in the response of the individual cells, assuming small differences in a single internal parameter. By operating at two different flow rates per experiment, we observe four of categories of cell behaviour. The present model (gustavsson3) predicts the steady-state ...
Creators: Franco du Preez, Jacky Snoep, David D van Niekerk
Submitter: Franco du Preez
Model type: Ordinary differential equations (ODE)
Model format: Not specified
Environment: JWS Online
Organism: Saccharomyces cerevisiae
Investigations: Yeast Glycolytic Oscillations
An existing detailed kinetic model for the steady-state behavior of yeast glycolysis was tested for its ability to simulate dynamic behavior. This model (dupreez1) is the basis kinetic model derived from that published by Teusink et al., 2000 (PMID: 10951190).
Creators: Franco du Preez, David D van Niekerk
Submitter: Franco du Preez
Model type: Ordinary differential equations (ODE)
Model format: Not specified
Environment: JWS Online
Organism: Saccharomyces cerevisiae
Investigations: Yeast Glycolytic Oscillations
An existing detailed kinetic model for the steady-state behavior of yeast glycolysis was tested for its ability to simulate dynamic behavior. This model (dupreez2) is an oscillating version of the basis kinetic model (dupreez1) derived from that published by Teusink et al., 2000 (PMID: 10951190).
Creators: Franco du Preez, Jacky Snoep, David D van Niekerk
Submitter: Franco du Preez
Model type: Ordinary differential equations (ODE)
Model format: Not specified
Environment: JWS Online
Organism: Saccharomyces cerevisiae
Investigations: Yeast Glycolytic Oscillations
An existing detailed kinetic model for the steady-state behavior of yeast glycolysis was tested for its ability to simulate dynamic behavior. This model (dupreez3) is an oscillating version of the model published by Teusink et al., 2000 (PMID: 10951190), which describes data for glycolytic intermediates in oscillating yeast cultures reported by Richard et al., 1996 (PMID: 8813760).
Creators: Franco du Preez, Jacky Snoep, David D van Niekerk
Submitter: Franco du Preez
Model type: Ordinary differential equations (ODE)
Model format: Not specified
Environment: JWS Online
Organism: Saccharomyces cerevisiae
Investigations: Yeast Glycolytic Oscillations
An existing detailed kinetic model for the steady-state behavior of yeast glycolysis was tested for its ability to simulate dynamic behavior. This model (dupreez4) is an oscillating version of the model published by Teusink et al., 2000 (PMID: 10951190), which describes data for glycolytic intermediates in oscillating yeast cultures reported by Richard et al., 1996a (PMID: 8813760) as well as the rapid synchronization following the mixing of two yeast cultures that oscillate 180 degrees out of ...
Creators: Franco du Preez, Jacky Snoep, David D van Niekerk
Submitter: Franco du Preez
Model type: Ordinary differential equations (ODE)
Model format: Not specified
Environment: JWS Online
Organism: Saccharomyces cerevisiae
Investigations: Yeast Glycolytic Oscillations
An existing detailed kinetic model for the steady-state behavior of yeast glycolysis was tested for its ability to simulate dynamic behavior. This model (dupreez5) is an oscillating version of the model published by Teusink et al., 2000 (PMID: 10951190), which describes the amplitude bifurcation of oscillating yeast cultures in a CSTR setup reported by Hynne et al., 2001 (PMID: 11744196).
Creators: Franco du Preez, Jacky Snoep, David D van Niekerk
Submitter: Franco du Preez
Model type: Ordinary differential equations (ODE)
Model format: Not specified
Environment: JWS Online
Organism: Saccharomyces cerevisiae
Investigations: Yeast Glycolytic Oscillations
An existing detailed kinetic model for the steady-state behavior of yeast glycolysis was tested for its ability to simulate dynamic behavior. This model (dupreez6) is an oscillating version of the model published by Teusink et al., 2000 (PMID: 10951190), which describes data for glycolytic intermediates in cell free extracts of oscillating yeast cultures reported by Das and Busse, 1991 (PMCID: 1260073).
Creators: Franco du Preez, Jacky Snoep, David D van Niekerk
Submitter: Franco du Preez
Model type: Ordinary differential equations (ODE)
Model format: Not specified
Environment: JWS Online
Organism: Saccharomyces cerevisiae
Investigations: Yeast Glycolytic Oscillations
An existing detailed kinetic model for the steady-state behavior of yeast glycolysis was tested for its ability to simulate dynamic behavior. This model (dupreez7) is an oscillating version of the model published by Teusink et al., 2000 (PMID: 10951190), which describes the fluorescence signal of NADH in oscillating yeast cultures reported by Nielsen et al., 1998 (PMID: 17029704).
Creators: Franco du Preez, Jacky Snoep, David D van Niekerk
Submitter: Franco du Preez
Model type: Ordinary differential equations (ODE)
Model format: Not specified
Environment: JWS Online
Organism: Saccharomyces cerevisiae
Investigations: Yeast Glycolytic Oscillations
Quorum sensing(QS) allows the bacteria to monitor their surroundings and the size of their population. Staphylococcus aureus makes use of QS to regulate the production of virulence factors. This mathematical model of the QS system in S aureus was presented and analyzed (Journal of Mathematical Biology(2010) 61:17–54) in order to clarify the roles of the distinct interactions that make up the QS process, demonstrating which reactions dominate the behaviour of the system at various timepoints. ...
Creators: Sara Jabbari, John King, Adrian Koerber, Paul Williams
Submitter: Franco du Preez
Model type: Ordinary differential equations (ODE)
Model format: Not specified
Environment: JWS Online
Organism: Not specified
Investigations: No Investigations
Studies: No Studies
Assays: No Assays
An ODE model representing the metabolic network governing acid and solvent production by Clostridium acetobutylicum (Haus et al. BMC Systems Biology 2011, 5:10), incorporating the effect of pH upon gene regulation and subsequent end-product levels. This model describes the third of four experiments in which the pH of the culture was shifted. For this experiment acidogenesis at pH 5.7 was maintained for 121 hours, after which the pH control was stopped, allowing the natural metabolic shift to the ...
Creators: Sara Jabbari, Sylvia Haus
Submitter: Franco du Preez
Model type: Ordinary differential equations (ODE)
Model format: Not specified
Environment: JWS Online
Organism: Clostridium acetobutylicum
Investigations: No Investigations
Studies: No Studies
Assays: No Assays
An ODE model representing the metabolic network governing acid and solvent production by Clostridium acetobutylicum (Haus et al. BMC Systems Biology 2011, 5:10), incorporating the effect of pH upon gene regulation and subsequent end-product levels. This model describes the last of four experiments in which the pH of the culture was shifted. For this experiment the pH shift was reversed compared to the first three (shift from pH 4.5 to 5.7), with the pH control switched off after 129 hours. ...
Creators: Sara Jabbari, Sylvia Haus
Submitter: Franco du Preez
Model type: Ordinary differential equations (ODE)
Model format: Not specified
Environment: JWS Online
Organism: Clostridium acetobutylicum
Investigations: No Investigations
Studies: No Studies
Assays: No Assays
An ODE model representing the metabolic network governing acid and solvent production by Clostridium acetobutylicum (Haus et al. BMC Systems Biology 2011, 5:10), incorporating the effect of pH upon gene regulation and subsequent end-product levels. This model describes the second of four experiments in which the pH of the culture was shifted. For this experiment acidogenesis at pH 5.7 was maintained for 137.5 hours, after which the pH control was stopped, allowing the natural metabolic shift to ...
Creators: Sara Jabbari, Sylvia Haus
Submitter: Franco du Preez
Model type: Ordinary differential equations (ODE)
Model format: Not specified
Environment: JWS Online
Organism: Clostridium acetobutylicum
Investigations: No Investigations
Studies: No Studies
Assays: No Assays
An ODE model representing the metabolic network governing acid and solvent production by Clostridium acetobutylicum (Haus et al. BMC Systems Biology 2011, 5:10), incorporating the effect of pH upon gene regulation and subsequent end-product levels. This model describes the first of four experiments in which the pH of the culture was shifted. For this experiment acidogenesis at pH 5.7 was maintained for 137 hours, after which the pH control was stopped, allowing the natural metabolic shift to the ...
Creators: Sara Jabbari, Sylvia Haus
Submitter: Franco du Preez
Model type: Ordinary differential equations (ODE)
Model format: Not specified
Environment: JWS Online
Organism: Clostridium acetobutylicum
Investigations: No Investigations
Studies: No Studies
Assays: No Assays
Bacillus subtilis cells may opt to forgo normal cell division and instead form spores if subjected to certain environmental stimuli, for example nutrient deficiency or extreme temperature. The gene regulation net-work governing sporulation initiation accordingly incorporates a variety of signals and is of significant complexity. The present model (Bulletin of Mathematical Biology (2011) 73:181–211) includes four of these signals: nutrient levels, DNA damage, the products of the competence genes, ...
Creators: Sara Jabbari, John Heap, John King
Submitter: Franco du Preez
Model type: Ordinary differential equations (ODE)
Model format: Not specified
Environment: JWS Online
Organism: Clostridium acetobutylicum
Investigations: No Investigations
Studies: No Studies
Assays: No Assays
Abstract (Expand)
Authors: , , Matthew Horridge, Simon Jupp, , , , , Robert Stevens,
Date Published: 1st Feb 2013
Publication Type: Journal
DOI: 10.1002/cpe.2941
Citation: Concurrency Computat.: Pract. Exper. 25(4):467-480
Abstract (Expand)
Authors: , David D van Niekerk, Bob Kooi, Johann M Rohwer,
Date Published: 21st Jun 2012
Publication Type: Not specified
PubMed ID: 22712534
Citation:
Abstract (Expand)
Authors: , David D van Niekerk,
Date Published: 13th Jun 2012
Publication Type: Not specified
PubMed ID: 22686585
Citation:
Abstract (Expand)
Authors: Anna-Karin Gustavsson, David D van Niekerk, Caroline B Adiels, , Mattias Goksör,
Date Published: 23rd May 2012
Publication Type: Not specified
PubMed ID: 22607453
Citation:
Abstract (Expand)
Authors: Suzanne Geenen, , Michael Reed, H Frederik Nijhout, J Gerry Kenna, Ian D Wilson, ,
Date Published: 24th Aug 2011
Publication Type: Not specified
PubMed ID: 21888969
Citation:
Abstract (Expand)
Authors: , , Matthew Horridge, , , , ,
Date Published: 15th Jul 2011
Publication Type: Journal
PubMed ID: 21622664
Citation: Bioinformatics. 2011 Jul 15;27(14):2021-2. doi: 10.1093/bioinformatics/btr312. Epub 2011 May 26.
An overview of the JWS Online system, with emphasis on the latest model simulation interface and an update on the SBGN-ML and SED-ML support currently under development.
Creator: Martin Golebiewski
Submitter: Franco du Preez
SEEK at ICSB 2012 (presented by Olga Krebs)
Creators: Olga Krebs, Katy Wolstencroft, Carole Goble, Wolfgang Müller, Quyen Nguyen, Stuart Owen, Jacky Snoep, Franco du Preez, Martin Golebiewski, Andreas Weidemann
Submitter: Olga Krebs