Projects

Created At
Go
276 Projects found

The Molecular Systems Biology project holds information for reproducing simulation figures in the journal. This can include experimental data files, model files and manuscript information.

Programme: Journals

Public web page: http://msb.embopress.org

CropClock - Increasing Crops Biomass by Uncovering the Circadian Clock Network Using Dynamical Models

The circadian clock is an internal timing system that allows plants to predict daily and seasonal changes in light and temperature and thus to adapt photosynthesis, growth, and development to external conditions. The core oscillator is well understood in the model plant Arabidopsis, however, relatively little is known about the dynamic effects of the clock on agronomic behaviour of crop plants. ...

Programme: ERASysAPP

Public web page: Not specified

Cystic Fibrosis (CF)- lethal autosomic disease CFTR - Cystic Fibrosis Transmembrane Regulator

Programme: Model repository for M4 (Make Me My Model) clients of ISBE

Public web page: Not specified

We are modelling ROS management and mitochondrial dysfunction. Mitochondria produce both energy and reactive oxygen species (ROS), and suffer from ROS. Experimental data from University Milan-Bicocca.

Programme: Model repository for M4 (Make Me My Model) clients of ISBE

Public web page: Not specified

No description specified

Programme: This Project is not associated with a Programme

Public web page: Not specified

D-xylose is a major component of lignocellulose and is after D-glucose the most abundant monosaccharide on earth. However, D-xylose cannot be naturally utilised by several industrially relevant microorganisms. On the way to a strong bio-based economy in Europe, this widely available feedstock has to be made accessible for the sustainable microbial synthesis of value-added chemical building blocks to be used in a broad range of applications. The project aims at engineering Corynebacterium glutamicum ...

This project provides a space for storing, annotating and publishing Systo models.

Programme: Independent Projects

Public web page: Not specified

Within the e:Bio - Innovationswettbewerb Systembiologie (Federal Ministry of Education and Research (BMBF)), the SulfoSYSBIOTECH consortium (10 partners), aim to unravel the complexity and regulation of the carbon metabolic network of the thermoacidophilic archaeon Sulfolobus solfataricus (optimal growth at 80°C and pH 3) in order to provide new catalysts ‘extremozymes’ for utilization in White Biotechnology.

Based on the available S. solfataricus genome scale metabolic model (Ulas et al., 2012) ...

Programme: e:Bio

Public web page: http://www.sulfosys.com/

GMO free systems optimization of wine yeast for wine production by massive scale directed evolution

Programme: ERASysAPP

Public web page: Not specified

Designer microbial communities for fermented milk products: A Systems Biology Approach

Programme: ERASysAPP

Public web page: Not specified

Hypoglycaemia and lactic acidosis are key diagnostics for poor chances of survival in malaria patients. In this project we aim to test to what extent the metabolic activity of Plasmodium falciparum contributes to a changed glucose metabolism in malaria patients. The approach is to start with detailed bottom up models for the parasite and then merge these with more coarse grained models at the whole body level.

ErasysApp Funders

Programme: ERASysAPP

Public web page: Not specified

Systems biology of bacterial methylotrophy for biotechnological

Comparative Systems Biology: Lactic Acid Bacteria

ZucAt - Sucrose (from german Zucker) translocation in Arabidopsis thaliana. Sucrose translocation between plant tissues is crucial for growth, development and reproduction of plants. Systemic analysis of this metabolic process and underlying regulatory processes can help to achieve better understanding of carbon distribution within the plant and the formation of phenotypic traits. Sucrose translocation from ‘source’ tissues (e.g. mesophyll) to ‘sink’ tissues (e.g. root) is tightly bound to the ...

Programme: de.NBI Systems Biology Service Center (de.NBI-SysBio)

Public web page: Not specified

No description specified

Programme: Independent Projects

Public web page: Not specified

Systems Biology studies the properties and phenotypes that emerge from the interaction of biomolecules where such properties are not obvious from those of the individual molecules. By connecting fields such as genomics, proteomics, bioinformatics, mathematics, cell biology, genetics, mathematics, engineering and computer sciences, Systems Biology enables discovery of yet unknown principles underlying the functioning of living cells. At the same time, testable and predictive models of complex ...

Programme: Independent Projects

Public web page: http://www.icysb.se/

No description specified

Programme: ERASysAPP

Public web page: Not specified

BaCell-SysMO 2 Modelling carbon core metabolism in Bacillus subtilis – Exploring the contribution of protein complexes in core carbon and nitrogen metabolism.

Bacillus subtilis is a prime model organism for systems biology approaches because it is one of the most advanced models for functional genomics. Furthermore, comprehensive information on cell and molecular biology, physiology and genetics is available and the European Bacillus community (BACELL) has a well-established reputation for applying ...

Programme: SysMO

Public web page: http://www.sysmo.net/index.php?index=53

Systems Biology of Clostridium acetobutylicum - a possible answer to dwindling crude oil reserves

"Systems Understanding of Microbial Oxygen responses" (SUMO) investigates how Escherichia coli senses oxygen, or the associated changes in oxidation/reduction balance, via the Fnr and ArcA proteins, how these systems interact with other regulatory systems, and how the redox response of an E. coli population is generated from the responses of single cells. There are five sub-projects to determine system properties and behaviour and three sub-projects to employ different and complementary modelling ...

Ion and solute homeostasis in enteric bacteria: an integrated view generated from the interface of modelling and biological experimentation

Programme: SysMO

Public web page: http://www.sysmo.net/index.php?index=56

Systems analysis of process-induced stresses: towards a quantum increase in process performance of Pseudomonas putida as the cell factory of choice for white biotechnology.

The specific goal of this project is to exploit the full biotechnological efficacy of Pseudomonas putida KT2440 by developing new optimization strategies that increase its performance through a systems biology understanding of key metabolic and regulatory parameters that control callular responses to key stresses generated ...

Programme: SysMO

Public web page: http://www.psysmo.org/

Powered by
(v.1.12.0)
Copyright © 2008 - 2022 The University of Manchester and HITS gGmbH

By continuing to use this site you agree to the use of cookies