Projects: BaCell-SysMO
Institutions: University of Groningen
Expertise: Gram positive bacteria (Bacillus, Lactococcus, Streptococcus), competence, sporulation, germination, antimicrobial peptides, phenotypic heterogeneity, bistability, C- and N- metabolism, gene regulation, stress responses, pathogens, virulence factors, metal ion homeostasis, protein secretion
Tools: Biochemistry, Genetics, Molecular Biology, Bioinformatics, Genomics, Transcriptomics, time lapse microscopy, FACS, genomic array footprinting
Group leader Molecular Genetics
Projects: BaCell-SysMO
Institutions: University of Rostock
Expertise: Mathematical modelling, Bacillus subtilis, Deterministic modelling of gene regulation networks, stress responses, Systems Biology, sensitivity analysis, Dynamics and Control of Biological Networks, Parameter estimation
Tools: Biochemistry, Computational and theoretical biology, ODE, Matlab, linux, Stochastic models, Deterministic models, Dynamic modelling
Modelling of the general stress response activation cascade of sigB in B. subtilis in response to starvation.
Projects: BaCell-SysMO
Institutions: University of Groningen
Expertise: Microbiology, Genetics, Molecular Biology, Bacillus subtilis, translational control of gene expression, sporulation, phenotypic heterogeneity, bistability, gene regulation, stress responses, Signal transduction in Gram-negative bacteria; Synthetic Microbiology; Single cell gene expression; Regulatory networks; biochemistry; histidine ki..., regulation of gene expression, Systems Biology
Tools: Microbiology, Genetics, Molecular Biology, Genetic analysis, Genetic modification, Model organisms, Single Cell analysis, PCR, Fluorecence based reporter gene analyses/single cell analyses, Molecular biology techniques (RNA/DNA), time lapse microscopy, Time-lapse fluorescence microscopy Flow cytometry
Projects: BaCell-SysMO
Institutions: University of Greifswald
Expertise: Microbiology, Molecular Biology, Bacillus subtilis, stress responses, functional protein expression, carbon metabolism
Tools: Molecular Biology, Biochemistry and protein analysis, Proteomics, Proteomics (2D-PAGE), 2-D Gel Electrphoresis, GeLC-MS/MS, metabolic labeling, absolute quantification, AQUA
I'm Post-Doc in the lab of Prof. Becher at the University of Greifswald. I'm working on the relative and absolute protein quantitation using gel-based and mass-spectrometric methods.
Projects: BaCell-SysMO
Institutions: University of Groningen
Expertise: Genetics, Molecular Biology, Microarray analysis, Bacillus subtilis, phenotypic heterogeneity, gene regulation, stress responses, protein secretion, functional protein expression, microscopy, fluorescence protein fusions (transcriptional and translational), localisation studies
Tools: Genetic modification, Transcriptomics, Microarray analysis, Fluorecence based reporter gene analyses/single cell analyses, Site-directed mutagenesis, Fluorescence microscopy, Flow cytometry, Immunofluorescence, transposon mutagenesis, Molecular biology techniques (RNA/DNA/Protein), DNA affinity chromatography, EMSA
PhD student. Analyzing CcpA affinity to cre boxes (catabolite responsive elements) and response of B. subtilis to membrane protein overproduction stress.
Projects: BaCell-SysMO
Institutions: University of Stuttgart
Expertise: Microbiology, Biochemistry, Mathematical modelling, Bacillus subtilis, Mathematical modelling of biosystems and bioprocesses, stress responses, Systems Biology, Nonlinear Dynamics, carbon metabolism, Signalling networks, Metabolic Networks
Tools: Computational and theoretical biology, ODE, Matlab, Mathematica, Fermentation, Chromatography, continuous cultivation, Enzyme assay, Computational Systems Biology, Deterministic models, Dynamic modelling, fed-batch cultivation
I am a biologist in the lab of Prof. Reuss at the University of Stuttgart and I am working in the field of biotechnology and mathematical modelling.
Projects: SUMO
Institutions: University of Amsterdam
Expertise: Transcriptomics, Bacillus subtilis, Escherichia coli, stress responses
Tools: Chemostats, HPLC, phage transduction