I'm Post-Doc in the lab of Prof. Becher at the University of Greifswald. I'm working on the relative and absolute protein quantitation using gel-based and mass-spectrometric methods.
SEEK ID: https://fairdomhub.org/people/289
Location: Germany
ORCID: Not specified
Joined: 26th Apr 2009
Expertise: Microbiology, Molecular Biology, Bacillus subtilis, stress responses, functional protein expression, carbon metabolism
Tools: Molecular Biology, Biochemistry and protein analysis, Proteomics, Proteomics (2D-PAGE), 2-D Gel Electrphoresis, GeLC-MS/MS, metabolic labeling, absolute quantification, AQUA
Related items
- Programmes (1)
- Projects (1)
- Institutions (1)
- Investigations (1)
- Studies (1)
- Assays (5)
- Data files (6+1)
- SOPs (0+2)
- Publications (1)
- Presentations (0+1)
SysMO is a European transnational funding and research initiative on "Systems Biology of Microorganisms".
The goal pursued by SysMO was to record and describe the dynamic molecular processes going on in unicellular microorganisms in a comprehensive way and to present these processes in the form of computerized mathematical models.
Systems biology will raise biomedical and biotechnological research to a new quality level and contribute markedly to progress in understanding. Pooling European research ...
Projects: BaCell-SysMO, COSMIC, SUMO, KOSMOBAC, SysMO-LAB, PSYSMO, SCaRAB, MOSES, TRANSLUCENT, STREAM, SulfoSys, SysMO DB, SysMO Funders, SilicoTryp, Noisy-Strep
Web page: http://sysmo.net/
BaCell-SysMO 2 Modelling carbon core metabolism in Bacillus subtilis – Exploring the contribution of protein complexes in core carbon and nitrogen metabolism.
Bacillus subtilis is a prime model organism for systems biology approaches because it is one of the most advanced models for functional genomics. Furthermore, comprehensive information on cell and molecular biology, physiology and genetics is available and the European Bacillus community (BACELL) has a well-established reputation for applying ...
Programme: SysMO
Public web page: http://www.sysmo.net/index.php?index=53
Organisms: Bacillus subtilis
High salinity chemostat cultivation, multiomics sampling (proteome, transcriptome, metabolome, fluxome) and modelling of carbon core metabolism of Bacillus subtilis 168.
Submitter: Sandra Maass
Studies: B. subtilis_SysMo2_Chemostat_growthrate-salt, Fluxome analysis of Bacillus subtilis 168 under osmotic stress
Assays: 13C Metabolic Flux Analysis of Bacillus subtilis 168 in continuous high-..., Absolute quantification of proteins by the AQUA-technology, Absolute quantification of proteins using QconCAT technology, Relative quantification of proteins by metabolic labeling, Transcriptome data for chemostat cultivated samples, extracellular metabolites, intracellular metabolites
Snapshots: No snapshots
B. subtilis was grown in minimal media in a chemostat at different growth rates (µ= max, µ=0.1, µ=0.4) and in the presence of 1.2M NaCl (µ=0.1) with or without glycinebetaine. Transcriptome, proteome and metabolome were investigated.
Submitter: Sandra Maass
Investigation: Multiomics study of Bacillus subtilis under osm...
Assays: Absolute quantification of proteins by the AQUA-technology, Absolute quantification of proteins using QconCAT technology, Relative quantification of proteins by metabolic labeling, Transcriptome data for chemostat cultivated samples, extracellular metabolites, intracellular metabolites
Snapshots: No snapshots
Submitter: Sandra Maass
Assay type: Proteomics
Technology type: 2D Gel Electrophoresis
Investigation: The transition from growing to non-growing Baci...
Organisms: Bacillus subtilis, Bacillus subtilis
SOPs: 1 hidden item
Data files: Batchfermentation_exp-starv01_2D-proteomics
Snapshots: No snapshots
Submitter: Sandra Maass
Assay type: Protein Expression Profiling
Technology type: Mass Spectrometry
Investigation: The transition from growing to non-growing Baci...
Organisms: Bacillus subtilis, Bacillus subtilis
SOPs: 1 hidden item
Data files: batchfermentation exp-starv01 quant-proteomics
Snapshots: No snapshots
Submitter: Sandra Maass
Assay type: Proteomics
Technology type: Mass Spectrometry
Investigation: The transition from growing to non-growing Baci...
Submitter: Sandra Maass
Assay type: Protein Expression Profiling
Technology type: Mass Spectrometry
Investigation: Multiomics study of Bacillus subtilis under osm...
Organisms: Bacillus subtilis : 168 Trp+ (wild-type / tryptophan prototroph)
SOPs: 1 hidden item
Data files: B. subtilis_SysMo2_Chemostat_growthrate-salt_sa..., B. subtilis_SysMo2_Chemostat_growthrate-salt_sa...
Snapshots: No snapshots
Submitter: Sandra Maass
Assay type: Proteomics
Technology type: Mass Spectrometry
Investigation: Multiomics study of Bacillus subtilis under osm...
Organisms: Bacillus subtilis : 168 Trp+ (wild-type / tryptophan prototroph)
SOPs: No SOPs
Data files: B. subtilis_SysMo2_Chemostat_growhtrate-salt_ce..., B. subtilis_SysMo2_Chemostat_growhtrate-salt_ce...
Snapshots: No snapshots
batch fermatation - The transition from growing to non-growing Bacillus subtilis cells
Creator: Sandra Maass
Submitter: The JERM Harvester
Investigations: The transition from growing to non-growing Baci...
Studies: Batchfermentation exp-starv01_090204
batch fermatation - The transition from growing to non-growing Bacillus subtilis cells
Creator: Sandra Maass
Submitter: Sandra Maass
Investigations: The transition from growing to non-growing Baci...
Studies: Batchfermentation exp-starv01_090204
B. subtilis was grown in minimal media in a chemostat at different growth rates (µ= max, µ=0.1, µ=0.4) and in the presence of 1.2M NaCl (µ=0.1) with or without glycinebetaine. Here you'll find cell sizes for every sample.
Creators: Sandra Maass, Michael Kohlstedt, Claudia Korneli
Submitter: Sandra Maass
B. subtilis was grown in minimal media in a chemostat at growth rate µ=0.1, with 1.2M NaCl and glycine betaine. Relative quantification for the proteome was done using metabolic labeling.
Creator: Sandra Maass
Submitter: Sandra Maass
B. subtilis was grown in minimal media in a chemostat at growth rate µ=0.1, with 1.2M NaCl, without glycine betaine. Relative quantification for the proteome was done using metabolic labeling.
Creator: Sandra Maass
Submitter: Sandra Maass
B. subtilis was grown in minimal media in a chemostat at different growth rates (µ= max, µ=0.1, µ=0.4) and in the presence of 1.2M NaCl (µ=0.1) with or without glycinebetaine. Here you'll find cell titers for every sample.
Creators: Sandra Maass, Michael Kohlstedt, Claudia Korneli
Submitter: Sandra Maass
Abstract (Expand)
Authors: , Susanne Sievers, Daniela Zühlke, Judith Kuzinski, , Jan Muntel, Bernd Hessling, Jörg Bernhardt, Rabea Sietmann, , , Dörte Becher
Date Published: 11th Mar 2011
Publication Type: Not specified
PubMed ID: 21395229
Citation: