Publications

What is a Publication?
619 Publications visible to you, out of a total of 619

Abstract (Expand)

We have developed MINOMICS, a tool that allows facile and in-depth visualization of prokaryotic transcriptomic and proteomic data in conjunction with genomics data. MINOMICS generates interactive linear genome maps in which multiple experimental datasets are displayed together with operon, regulatory motif, transcriptional promoter and transcriptional terminator information. AVAILABILITY: MINOMICS is freely accessible at http://www.minomics.nl

Authors: Rutger W W Brouwer, Sacha A F T van Hijum,

Date Published: 12th Nov 2008

Publication Type: Not specified

Abstract (Expand)

Disulfide bonds are important for the correct folding, structural integrity, and activity of many biotechnologically relevant proteins. For synthesis and subsequent secretion of these proteins in bacteria, such as the well-known "cell factory" Bacillus subtilis, it is often the correct formation of disulfide bonds that is the greatest bottleneck. Degradation of inefficiently or incorrectly oxidized proteins and the requirement for costly and time-consuming reduction and oxidation steps in the downstream processing of the proteins still are major limitations for full exploitation of B. subtilis for biopharmaceutical production. Therefore, the present study was aimed at developing a novel in vivo strategy for improved production of secreted disulfide-bond-containing proteins. Three approaches were tested: depletion of the major cytoplasmic reductase TrxA; introduction of the heterologous oxidase DsbA from Staphylococcus carnosus; and addition of redox-active compounds to the growth medium. As shown using the disulfide-bond-containing molecule Escherichia coli PhoA as a model protein, combined use of these three approaches resulted in secretion of amounts of active PhoA that were approximately 3.5-fold larger than the amounts secreted by the parental strain B. subtilis 168. Our findings indicate that Bacillus strains with improved oxidizing properties can be engineered for biotechnological production of heterologous high-value proteins containing disulfide bonds.

Authors: Thijs R H M Kouwen, Jean-Yves F Dubois, Roland Freudl, Wim J Quax,

Date Published: 24th Oct 2008

Publication Type: Not specified

Abstract (Expand)

With the advent of a new generation of high-resolution mass spectrometers, the fields of proteomics and metabolomics have gained powerful new tools. In this paper, we demonstrate a novel computational method that improves the mass accuracy of the LTQ-Orbitrap mass spectrometer from an initial +/- 1-2 ppm, obtained by the standard software, to an absolute median of 0.21 ppm (SD 0.21 ppm). With the increased mass accuracy it becomes much easier to match mass chromatograms in replicates and different sample types, even if compounds are detected at very low intensities. The proposed method exploits the ubiquitous presence of background ions in LC-MS profiles for accurate alignment and internal mass calibration, making it applicable for all types of MS equipment. The accuracy of this approach will facilitate many downstream systems biology applications, including mass-based molecule identification, ab initio metabolic network reconstruction, and untargeted metabolomics in general.

Authors: Richard A Scheltema, Anas Kamleh, David Wildridge, Charles Ebikeme, David G Watson, Michael P Barrett, ,

Date Published: 22nd Oct 2008

Publication Type: Not specified

Abstract

Not specified

Authors: Jamie A. Lee, Josef Spidlen, Keith Boyce, Jennifer Cai, Nicholas Crosbie, Mark Dalphin, Jeff Furlong, Maura Gasparetto, Michael Goldberg, Elizabeth M. Goralczyk, Bill Hyun, Kirstin Jansen, Tobias Kollmann, Megan Kong, Robert Leif, Shannon McWeeney, Thomas D. Moloshok, Wayne Moore, Garry Nolan, John Nolan, Janko Nikolich-Zugich, David Parrish, Barclay Purcell, Yu Qian, Biruntha Selvaraj, Clayton Smith, Olga Tchuvatkina, Anne Wertheimer, Peter Wilkinson, Christopher Wilson, James Wood, Robert Zigon, Richard H. Scheuermann, Ryan R. Brinkman

Date Published: 1st Oct 2008

Publication Type: Journal

Abstract (Expand)

Protein degradation mediated by ATP-dependent proteases, such as Hsp100/Clp and related AAA+ proteins, plays an important role in cellular protein homeostasis, protein quality control and the regulation of, e.g. heat shock adaptation and other cellular differentiation processes. ClpCP with its adaptor proteins and other related proteases, such as ClpXP or ClpEP of Bacillus subtilis, are involved in general and regulatory proteolysis. To determine if proteolysis occurs at specific locations in B. subtilis cells, we analysed the subcellular distribution of the Clp system together with adaptor and general and regulatory substrate proteins, under different environmental conditions. We can demonstrate that the ATPase and the proteolytic subunit of the Clp proteases, as well as the adaptor or substrate proteins, form visible foci, representing active protease clusters localized to the polar and to the mid-cell region. These clusters could represent a compartmentalized place for protein degradation positioned at the pole close to where most of the cellular protein biosynthesis and also protein quality control are taking place, thereby spatially separating protein synthesis and degradation.

Authors: Janine Kirstein, Henrik Strahl, Noël Molière, , Kürşad Turgay

Date Published: 10th Sep 2008

Publication Type: Not specified

Abstract (Expand)

In many bacteria glucose is the preferred carbon source and represses the utilization of secondary substrates. In Bacillus subtilis, this carbon catabolite repression (CCR) is achieved by the global transcription regulator CcpA, whose activity is triggered by the availability of its phosphorylated cofactors, HPr(Ser46-P) and Crh(Ser46-P). Phosphorylation of these proteins is catalyzed by the metabolite-controlled kinase HPrK/P. Recent studies have focused on glucose as a repressing substrate. Here, we show that many carbohydrates cause CCR. The substrates form a hierarchy in their ability to exert repression via the CcpA-mediated CCR pathway. Of the two cofactors, HPr is sufficient for complete CCR. In contrast, Crh cannot substitute for HPr on substrates that cause a strong repression. Determination of the phosphorylation state of HPr in vivo revealed a correlation between the strength of repression and the degree of phosphorylation of HPr at Ser46. Sugars transported by the phosphotransferase system (PTS) cause the strongest repression. However, the phosphorylation state of HPr at its His15 residue and PTS transport activity have no impact on the global CCR mechanism, which is a major difference compared to the mechanism operative in Escherichia coli. Our data suggest that the hierarchy in CCR exerted by the different substrates is exclusively determined by the activity of HPrK/P.

Authors: Kalpana D Singh, Matthias H Schmalisch, , Boris Görke

Date Published: 29th Aug 2008

Publication Type: Not specified

Abstract (Expand)

The transport of inorganic phosphate (P(i)) is essential for the growth of all organisms. The metabolism of soil-dwelling Streptomyces species, and their ability to produce antibiotics and other secondary metabolites, are strongly influenced by the availability of phosphate. The transcriptional regulation of the SCO4138 and SCO1845 genes of Streptomyces coelicolor was studied. These genes encode the two putative low-affinity P(i) transporters PitH1 and PitH2, respectively. Expression of these genes and that of the high-affinity transport system pstSCAB follows a sequential pattern in response to phosphate deprivation, as shown by coupling their promoters to a luciferase reporter gene. Expression of pitH2, but not that of pap-pitH1 (a bicistronic transcript), is dependent upon the response regulator PhoP. PhoP binds to specific sequences consisting of direct repeats of 11 nt in the promoter of pitH2, but does not bind to the pap-pitH1 promoter, which lacks these direct repeats for PhoP recognition. The transcription start point of the pitH2 promoter was identified by primer extension analyses, and the structure of the regulatory sequences in the PhoP-protected DNA region was established. It consists of four central direct repeats flanked by two other less conserved repeats. A model for PhoP regulation of this promoter is proposed based on the four promoter DNA-PhoP complexes detected by electrophoretic mobility shift assays and footprinting studies.

Authors: Fernando Santos-Beneit, , Etelvina Franco-Domínguez,

Date Published: 1st Aug 2008

Publication Type: Not specified

Abstract (Expand)

Calmodulin plays a vital role in mediating bidirectional synaptic plasticity by activating either calcium/calmodulin-dependent protein kinase II (CaMKII) or protein phosphatase 2B (PP2B) at different calcium concentrations. We propose an allosteric model for calmodulin activation, in which binding to calcium facilitates the transition between a low-affinity [tense (T)] and a high-affinity [relaxed (R)] state. The four calcium-binding sites are assumed to be nonidentical. The model is consistent with previously reported experimental data for calcium binding to calmodulin. It also accounts for known properties of calmodulin that have been difficult to model so far, including the activity of nonsaturated forms of calmodulin (we predict the existence of open conformations in the absence of calcium), an increase in calcium affinity once calmodulin is bound to a target, and the differential activation of CaMKII and PP2B depending on calcium concentration.

Authors: M. I. Stefan, S. J. Edelstein, N. Le Novere

Date Published: 31st Jul 2008

Publication Type: Not specified

Abstract (Expand)

SUMMARY: Quinones are highly toxic naturally occurring thiol-reactive compounds. We have previously described novel pathways for quinone detoxification in the Gram-positive bacterium Bacillus subtilis. In this study, we have investigated the extent of irreversible and reversible thiol modifications caused in vivo by electrophilic quinones. Exposure to toxic benzoquinone (BQ) concentrations leads to depletion of numerous Cys-rich cytoplasmic proteins in the proteome of B. subtilis. Mass spectrometry and immunoblot analyses demonstrated that these BQ-depleted proteins represent irreversibly damaged BQ aggregates that escape the two-dimensional gel separation. This enabled us to quantify the depletion of thiol-containing proteins which are the in vivo targets for thiol-(S)-alkylation by toxic quinone compounds. Metabolomic approaches confirmed that protein depletion is accompanied by depletion of the low-molecular-weight (LMW) thiol cysteine. Finally, no increased formation of disulphide bonds was detected in the thiol-redox proteome in response to sublethal quinone concentrations. The glyceraldehyde-3-phosphate dehydrogenase (GapA) was identified as the only new target for reversible thiol modifications after exposure to toxic quinones. Together our data show that the thiol-(S)-alkylation reaction with protein and non-protein thiols is the in vivo mechanism for thiol depletion and quinone toxicity in B. subtilis and most likely also in other bacteria.

Authors: Manuel Liebeke, Dierk-Christoph Pöther, Nguyen van Duy, Dirk Albrecht, Dörte Becher, Falko Hochgräfe, , , Haike Antelmann

Date Published: 30th Jul 2008

Publication Type: Not specified

Abstract (Expand)

Most bacteria can selectively use substrates from a mixture of different carbon sources. The presence of preferred carbon sources prevents the expression, and often also the activity, of catabolic systems that enable the use of secondary substrates. This regulation, called carbon catabolite repression (CCR), can be achieved by different regulatory mechanisms, including transcription activation and repression and control of translation by an RNA-binding protein, in different bacteria. Moreover, CCR regulates the expression of virulence factors in many pathogenic bacteria. In this Review, we discuss the most recent findings on the different mechanisms that have evolved to allow bacteria to use carbon sources in a hierarchical manner.

Authors: Boris Görke,

Date Published: 17th Jul 2008

Publication Type: Not specified

Abstract (Expand)

The alternative sigma factor sigma(B) of Bacillus subtilis is responsible for the induction of the large general stress regulon comprising approximately 150-200 genes. YqgZ, a member of the sigma(B) regulon, resembles the global regulator Spx of the diamide stress regulon in B. subtilis. In this work we conducted a comprehensive transcriptome and proteome analysis of the B. subtilis wild-type 168 and its isogenic DeltasigB and DeltayqgZ mutants following exposure to 4% (v/v) ethanol stress, which led to the characterization of a 'subregulon' within the general stress response that is regulated by YqgZ. Activation and induction of sigma(B) are necessary but not sufficient for a full expression of all general stress genes. Expression of 53 genes was found to be positively regulated and the expression of 18 genes was negatively affected by YqgZ. The identification of the negatively regulated group represents a so far uncharacterized regulatory phenomenon observed in the DeltasigB mutant background that can now be attributed to the function of YqgZ. Due to the strict sigma(B)-dependent expression of YqgZ it was renamed to MgsR (modulator of the general stress response).

Authors: Alexander Reder, Dirk Höper, Christin Weinberg, Ulf Gerth, Martin Fraunholz,

Date Published: 14th Jul 2008

Publication Type: Not specified

Abstract (Expand)

Bacillus subtilis is a prolific producer of enzymes and biopharmaceuticals. However, the susceptibility of heterologous proteins to degradation by (extracellular) proteases is a major limitation for use of B. subtilis as a protein cell factory. An increase in protein production levels has previously been achieved by using either protease-deficient strains or addition of protease inhibitors to B. subtilis cultures. Notably, the effects of genetic and chemical inhibition of proteases have thus far not been compared in a systematic way. In the present studies, we therefore compared the exoproteomes of cells in which extracellular proteases were genetically or chemically inactivated. The results show substantial differences in the relative abundance of various extracellular proteins. Furthermore, a comparison of the effects of genetic and/or chemical protease inhibition on the stress response triggered by (over) production of secreted proteins showed that chemical protease inhibition provoked a genuine secretion stress response. From a physiological point of view, this suggests that the deletion of protease genes is a better way to prevent product degradation than the use of protease inhibitors. Importantly however, studies with human interleukin-3 show that chemical protease inhibition can result in improved production of protease-sensitive secreted proteins even in mutant strains lacking eight extracellular proteases.

Authors: Lidia Westers, Helga Westers, Geeske Zanen, Haike Antelmann, , David Noone, Kevin M Devine, , Wim J Quax

Date Published: 12th Jun 2008

Publication Type: Not specified

Abstract (Expand)

Thiol-disulfide oxidoreductases (TDORs) catalyze thiol-disulfide exchange reactions that are crucial for protein activity and stability. Specifically, they can function as thiol oxidases, disulfide reductases or disulfide isomerases. The generally established view is that particular TDORs act unidirectionally within a fixed cascade of specific, sequentially arranged reactions. However, recent studies on both Gram-negative and Gram-positive bacteria imply that this view needs to be expanded, at least for thiol-disulfide exchanges in proteins that are exported from the cytoplasm. Here, we present our opinion that various TDORs can function as interchangeable modules in different thiol-disulfide exchange pathways. Such TDOR modules, thus, fulfil important functions in generating the diversity in activity and specificity that is needed in productive extracytoplasmic thiol-disulfide exchange.

Authors: Thijs R H M Kouwen,

Date Published: 30th May 2008

Publication Type: Not specified

Abstract (Expand)

Bacillus subtilis has been developed as a model system for physiological proteomics. However, thus far these studies have mainly been limited to cytoplasmic, extracellular, and cell-wall attached proteins. Although being certainly important for cell physiology, the membrane protein fraction has not been studied in comparable depth due to inaccessibility by traditional 2-DE-based workflows and limitations in reliable quantification. In this study, we now compare the potential of stable isotope labeling with amino acids (SILAC) and (14)N/(15)N-labeling for the analysis of bacterial membrane fractions in physiology-driven proteomic studies. Using adaptation of B. subtilis to amino acid (lysine) and glucose starvation as proof of principle scenarios, we show that both approaches provide similarly valuable data for the quantification of bacterial membrane proteins. Even if labeling with stable amino acids allows a more straightforward analysis of data, the (14)N/(15)N-labeling has some advantages in general such as labeling of all amino acids and thereby increasing the number of peptides for quantification. Both, SILAC as well as (14)N/(15)N-labeling are compatible with 2-DE, 2-D LC-MS/MS, and GeLC-MS/MS and thus will allow comprehensive simultaneous interrogation of cytoplasmic and enriched membrane proteomes.

Authors: Annette Dreisbach, Andreas Otto, Dörte Becher, Elke Hammer, Alexander Teumer, Joost W Gouw, ,

Date Published: 21st May 2008

Publication Type: Not specified

Abstract (Expand)

UNLABELLED: Medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) catalyzes crucial steps in mitochondrial fatty acid oxidation, a process that is of key relevance for maintenance of energy homeostasis, especially during high metabolic demand. To gain insight into the metabolic consequences of MCAD deficiency under these conditions, we compared hepatic carbohydrate metabolism in vivo in wild-type and MCAD(-/-) mice during fasting and during a lipopolysaccharide (LPS)-induced acute phase response (APR). MCAD(-/-) mice did not become more hypoglycemic on fasting or during the APR than wild-type mice did. Nevertheless, microarray analyses revealed increased hepatic peroxisome proliferator-activated receptor gamma coactivator-1alpha (Pgc-1alpha) and decreased peroxisome proliferator-activated receptor alpha (Ppar alpha) and pyruvate dehydrogenase kinase 4 (Pdk4) expression in MCAD(-/-) mice in both conditions, suggesting altered control of hepatic glucose metabolism. Quantitative flux measurements revealed that the de novo synthesis of glucose-6-phosphate (G6P) was not affected on fasting in MCAD(-/-) mice. During the APR, however, this flux was significantly decreased (-20%) in MCAD(-/-) mice compared with wild-type mice. Remarkably, newly formed G6P was preferentially directed toward glycogen in MCAD(-/-) mice under both conditions. Together with diminished de novo synthesis of G6P, this led to a decreased hepatic glucose output during the APR in MCAD(-/-) mice; de novo synthesis of G6P and hepatic glucose output were maintained in wild-type mice under both conditions. APR-associated hypoglycemia, which was observed in wild-type mice as well as MCAD(-/-) mice, was mainly due to enhanced peripheral glucose uptake. CONCLUSION: Our data demonstrate that MCAD deficiency in mice leads to specific changes in hepatic carbohydrate management on exposure to metabolic stress. This deficiency, however, does not lead to reduced de novo synthesis of G6P during fasting alone, which may be due to the existence of compensatory mechanisms or limited rate control of MCAD in murine mitochondrial fatty acid oxidation.

Authors: H. Herrema, T. G. Derks, T. H. van Dijk, V. W. Bloks, A. Gerding, R. Havinga, U. J. Tietge, M. Muller, G. P. Smit, F. Kuipers, D. J. Reijngoud

Date Published: 7th May 2008

Publication Type: Not specified

Abstract (Expand)

Many microorganisms, including bacteria of the class Streptomycetes, produce various secondary metabolites including antibiotics to gain a competitive advantage in their natural habitat. The production of these compounds is highly coordinated in a population to expedite accumulation to an effective concentration. Furthermore, as antibiotics are often toxic even to their producers, a coordinated production allows microbes to first arm themselves with a defense mechanism to resist their own antibiotics before production commences. One possible mechanism of coordination among individuals is through the production of signaling molecules. The gamma-butyrolactone system in Streptomyces coelicolor is a model of such a signaling system for secondary metabolite production. The accumulation of these signaling molecules triggers antibiotic production in the population. A pair of repressor-amplifier proteins encoded by scbA and scbR mediates the production and action of one particular gamma-butyrolactone, SCB1. Based on the proposed interactions of scbA and scbR, a mathematical model was constructed and used to explore the ability of this system to act as a robust genetic switch. Stability analysis shows that the butyrolactone system exhibits bistability and, in response to a threshold SCB1 concentration, can switch from an OFF state to an ON state corresponding to the activation of genes in the cryptic type I polyketide synthase gene cluster, which are responsible for production of the hypothetical polyketide. The switching time is inversely related to the inducer concentration above the threshold, such that short pulses of low inducer concentration cannot switch on the system, suggesting its possible role in noise filtering. In contrast, secondary metabolite production can be triggered rapidly in a population of cells producing the butyrolactone signal due to the presence of an amplification loop in the system. S. coelicolor was perturbed experimentally by varying concentrations of SCB1, and the model simulations match the experimental data well. Deciphering the complexity of this butyrolactone switch will provide valuable insights into how robust and efficient systems can be designed using "simple" two-protein networks.

Authors: Sarika Mehra, Salim Charaniya, , Wei-Shou Hu

Date Published: 2nd May 2008

Publication Type: Not specified

Abstract (Expand)

The following article describes systems biology as a merger of systems theory with cell biology. The role of modelling in the description of living cells is discussed. As an example, an abstract multiple-level model of a cell is developed. It is shown that a level of elementary cellular processes, realising cell functions, and a coordination-level are sufficient to create a system that is closed with respect to efficient causation. This form of self-organisation is thereby considered as basic criterion by which living systems, such as cells and organisms, are distinguished from machines and computers. Die causal closure of the cell is possible through the definition of the cell model as a cartesian closed category. It follows the conclusion that computer simulations of differential equations may be able to reproduce cellular processes but not this aspect of causal closure. The article ends with a discussion about the role of systems theory in the life sciences.

Authors: , Jan-Hendrik S. Hofmeyr

Date Published: 1st May 2008

Publication Type: Not specified

Abstract

Not specified

Authors: Yumiko Imai, Keiji Kuba, Josef M. Penninger

Date Published: 1st May 2008

Publication Type: Journal

Abstract

Not specified

Authors: , Colette O'Neill, , Peter Hawkey

Date Published: 9th Apr 2008

Publication Type: Not specified

Abstract (Expand)

A cornerstone of biotechnology is the use of microorganisms for the efficient production of chemicals and the elimination of harmful waste. Pseudomonas putida is an archetype of such microbes due to its metabolic versatility, stress resistance, amenability to genetic modifications, and vast potential for environmental and industrial applications. To address both the elucidation of the metabolic wiring in P. putida and its uses in biocatalysis, in particular for the production of non-growth-related biochemicals, we developed and present here a genome-scale constraint-based model of the metabolism of P. putida KT2440. Network reconstruction and flux balance analysis (FBA) enabled definition of the structure of the metabolic network, identification of knowledge gaps, and pin-pointing of essential metabolic functions, facilitating thereby the refinement of gene annotations. FBA and flux variability analysis were used to analyze the properties, potential, and limits of the model. These analyses allowed identification, under various conditions, of key features of metabolism such as growth yield, resource distribution, network robustness, and gene essentiality. The model was validated with data from continuous cell cultures, high-throughput phenotyping data, (13)C-measurement of internal flux distributions, and specifically generated knock-out mutants. Auxotrophy was correctly predicted in 75% of the cases. These systematic analyses revealed that the metabolic network structure is the main factor determining the accuracy of predictions, whereas biomass composition has negligible influence. Finally, we drew on the model to devise metabolic engineering strategies to improve production of polyhydroxyalkanoates, a class of biotechnologically useful compounds whose synthesis is not coupled to cell survival. The solidly validated model yields valuable insights into genotype-phenotype relationships and provides a sound framework to explore this versatile bacterium and to capitalize on its vast biotechnological potential.

Authors: Jacek Puchałka, Matthew A Oberhardt, Miguel Godinho, Agata Bielecka, Daniela Regenhardt, , Jason A Papin,

Date Published: 27th Mar 2008

Publication Type: Not specified

Abstract (Expand)

Glutamate is a central metabolite in all organisms since it provides the link between carbon and nitrogen metabolism. In Bacillus subtilis, glutamate is synthesized exclusively by the glutamate synthase, and it can be degraded by the glutamate dehydrogenase. In B. subtilis, the major glutamate dehydrogenase RocG is expressed only in the presence of arginine, and the bacteria are unable to utilize glutamate as the only carbon source. In addition to rocG, a second cryptic gene (gudB) encodes an inactive glutamate dehydrogenase. Mutations in rocG result in the rapid accumulation of gudB1 suppressor mutations that code for an active enzyme. In this work, we analyzed the physiological significance of this constellation of genes and enzymes involved in glutamate metabolism. We found that the weak expression of rocG in the absence of the inducer arginine is limiting for glutamate utilization. Moreover, we addressed the potential ability of the active glutamate dehydrogenases of B. subtilis to synthesize glutamate. Both RocG and GudB1 were unable to catalyze the anabolic reaction, most probably because of their very high K(m) values for ammonium. In contrast, the Escherichia coli glutamate dehydrogenase is able to produce glutamate even in the background of a B. subtilis cell. B. subtilis responds to any mutation that interferes with glutamate metabolism with the rapid accumulation of extragenic or intragenic suppressor mutations, bringing the glutamate supply into balance. Similarly, with the presence of a cryptic gene, the system can flexibly respond to changes in the external glutamate supply by the selection of mutations.

Authors: Fabian M Commichau, Katrin Gunka, Jens J Landmann,

Date Published: 7th Mar 2008

Publication Type: Not specified

Abstract (Expand)

Proteomic and transcriptomics signatures are powerful tools for visualizing global changes in gene expression in bacterial cells after exposure to stress, starvation or toxic compounds. Based on the global expression profile and the dissection into specific regulons, this knowledge can be used to predict the mode of action for novel antimicrobial compounds. This review summarizes our recent progress of proteomic signatures in the model bacterium for low-GC Gram-positive bacteria Bacillus subtilis in response to the antimicrobial compounds phenol, catechol, salicylic acid, 2-methylhydroquinone (2-MHQ) and 6-brom-2-vinyl-chroman-4-on (chromanon). Catechol, 2-MHQ and diamide displayed a common mode of action, as revealed by the induction of the thiol-specific oxidative stress response. In addition, multiple dioxygenases/glyoxalases, azoreductases and nitroreductases were induced by thiol-reactive compounds that are regulated by two novel thiol-specific regulators, YodB and MhqR (YkvE), both of which contribute to electrophile resistance in B. subtilis. These novel thiol-stress-responsive mechanisms are highly conserved among Gram-positive bacteria and are thought to have evolved to detoxify quinone-like electrophiles.

Authors: Haike Antelmann, , Peter Zuber

Date Published: 20th Feb 2008

Publication Type: Not specified

Abstract (Expand)

Recently, we showed that the MarR-type repressor YkvE (MhqR) regulates multiple dioxygenases/glyoxalases, oxidoreductases and the azoreductase encoding yvaB (azoR2) gene in response to thiol-specific stress conditions, such as diamide, catechol and 2-methylhydroquinone (MHQ). Here we report on the regulation of the yocJ (azoR1) gene encoding another azoreductase by the novel DUF24/MarR-type repressor, YodB after exposure to thiol-reactive compounds. DNA binding activity of YodB is directly inhibited by thiol-reactive compounds in vitro. Mass spectrometry identified YodB-Cys-S-adducts that are formed upon exposure of YodB to MHQ and catechol in vitro. This confirms that catechol and MHQ are auto-oxidized to toxic ortho- and para-benzoquinones which act like diamide as thiol-reactive electrophiles. Mutational analyses further showed that the conserved Cys6 residue of YodB is required for optimal repression in vivo and in vitro while substitution of all three Cys residues of YodB affects induction of azoR1 transcription. Finally, phenotype analyses revealed that both azoreductases, AzoR1 and AzoR2 confer resistance to catechol, MHQ, 1,4-benzoquinone and diamide. Thus, both azoreductases that are controlled by different regulatory mechanisms have common functions in quinone and azo-compound reduction to protect cells against the thiol reactivity of electrophiles.

Authors: Montira Leelakriangsak, Nguyen Thi Thu Huyen, Stefanie Töwe, Nguyen van Duy, Dörte Becher, , Haike Antelmann, Peter Zuber

Date Published: 16th Jan 2008

Publication Type: Not specified

Abstract (Expand)

Streptomyces coelicolor GlnR is a global regulator that controls genes involved in nitrogen metabolism. By genomic screening 10 new GlnR targets were identified, including enzymes for ammonium assimilation (glnII, gdhA), nitrite reduction (nirB), urea cleavage (ureA) and a number of biochemically uncharacterized proteins (SCO0255, SCO0888, SCO2195, SCO2400, SCO2404, SCO7155). For the GlnR regulon, a GlnR binding site which comprises the sequence gTnAc-n(6)-GaAAc-n(6)-GtnAC-n(6)-GAAAc-n(6) has been found. Reverse transcription analysis of S. coelicolor and the S. coelicolor glnR mutant revealed that GlnR activates or represses the expression of its target genes. Furthermore, glnR expression itself was shown to be nitrogen-dependent. Physiological studies of S. coelicolor and the S. coelicolor glnR mutant with ammonium and nitrate as the sole nitrogen source revealed that GlnR is not only involved in ammonium assimilation but also in ammonium supply. blast analysis demonstrated that GlnR-homologous proteins are present in different actinomycetes containing the glnA gene with the conserved GlnR binding site. By DNA binding studies, it was furthermore demonstrated that S. coelicolor GlnR is able to interact with these glnA upstream regions. We therefore suggest that GlnR-mediated regulation is not restricted to Streptomyces but constitutes a regulon conserved in many actinomycetes.

Authors: Yvonne Tiffert, Petra Supra, Reinhild Wurm, , Rolf Wagner,

Date Published: 7th Jan 2008

Publication Type: Not specified

Abstract (Expand)

Background Signalling pathways are complex systems in which not only simple monomeric molecules interact, but also more complex structures that include constitutive or induced protein assemblies. In particular, the hetero-and homo-dimerisation of proteins is a commonly encountered motif in signalling pathways. Several authors have suggested in recent times that dimerisation relates to a series of physical and biological outcomes used by the cell in the regulation of signal transduction. Results In this paper we investigate the role of homodimerisation in receptor-protein transducer interactions. Towards this end, mathematical modelling is used to analyse the features of such kind of interactions and to predict the behaviour of the system under different experimental conditions. A kinetic model in which the interaction between homodimers provokes a dual mechanism of activation (single and double protein transducer activation at the same time) is proposed. In addition, we analyse under which conditions the use of a power-law representation for the system is useful. Furthermore, we investigate the dynamical consequences of this dual mechanism and compare the performance of the system in different simulated experimental conditions. Conclusion The analysis of our mathematical model suggests that in receptor-protein interacting systems with dual mechanism there may be a shift between double and single activation in a way that intense double protein transducer activation could initiate and dominate the signal in the short term (getting a fast intense signal), while single protein activation could control the system in the medium and long term (when input signal is weaker and decreases slowly). Our investigation suggests that homodimerisation and oligomerisation are mechanisms used to enhance and regulate the dynamic properties of the initial steps in signalling pathways.

Authors: Julio Vera, , Walter Kolch,

Date Published: 2008

Publication Type: Not specified

Abstract (Expand)

All regulatory processes require components that sense the environmental or metabolic conditions of the cell, and sophisticated sensory proteins have been studied in great detail. During the last few years, it turned out that enzymes can control gene expression in response to the availability of their substrates. Here, we review four different mechanisms by which these enzymes interfere with regulation in bacteria. First, some enzymes have acquired a DNA-binding domain and act as direct transcription repressors by binding DNA in the absence of their substrates. A second class is represented by aconitase, which can bind iron responsive elements in the absence of iron to control the expression of genes involved in iron homoeostasis. The third class of these enzymes is sugar permeases of the phosphotransferase system that control the activity of transcription regulators by phosphorylating them in the absence of the specific substrate. Finally, a fourth class of regulatory enzymes controls the activity of transcription factors by inhibitory protein-protein interactions. We suggest that the enzymes that are active in the control of gene expression should be designated as trigger enzymes. An analysis of the occurrence of trigger enzymes suggests that the duplication and subsequent functional specialization is a major pattern in their evolution.

Authors: Fabian M Commichau,

Date Published: 11th Dec 2007

Publication Type: Not specified

Abstract (Expand)

ABSTRACT: BACKGROUND: The Gram-positive bacterium Bacillus subtilis is an important producer of high quality industrial enzymes and a few eukaryotic proteins. Most of these proteins are secreted into the growth medium, but successful examples of cytoplasmic protein production are also known. Therefore, one may anticipate that the high protein production potential of B. subtilis can be exploited for protein complexes and membrane proteins to facilitate their functional and structural analysis. The high quality of proteins produced with B. subtilis results from the action of cellular quality control systems that efficiently remove misfolded or incompletely synthesized proteins. Paradoxically, cellular quality control systems also represent bottlenecks for the production of various heterologous proteins at significant concentrations. CONCLUSION: While inactivation of quality control systems has the potential to improve protein production yields, this could be achieved at the expense of product quality. Mechanisms underlying degradation of secretory proteins are nowadays well understood and often controllable. It will therefore be a major challenge for future research to identify and modulate quality control systems of B. subtilis that limit the production of high quality protein complexes and membrane proteins, and to enhance those systems that facilitate assembly of these proteins.

Authors: Jessica C Zweers, Imrich Barák, Dörte Becher, Arnold Jm Driessen, , Vesa P Kontinen, Manfred J Saller, L'udmila Vavrová,

Date Published: 2nd Dec 2007

Publication Type: Not specified

Abstract (Expand)

The computational reconstruction and analysis of cellular models of microbial metabolism is one of the great success stories of systems biology. The extent and quality of metabolic network reconstructions is, however, limited by the current state of biochemical knowledge. Can experimental high-throughput data be used to improve and expand network reconstructions to include unexplored areas of metabolism? Recent advances in experimental technology and analytical methods bring this aim an important step closer to realization. Data integration will play a particularly important part in exploiting the new experimental opportunities.

Authors: , Dennis Vitkup, Michael P Barrett

Date Published: 21st Nov 2007

Publication Type: Not specified

Abstract (Expand)

SUMMARY: We present a Cytoscape plugin for the inference and visualization of networks from high-resolution mass spectrometry metabolomic data. The software also provides access to basic topological analysis. This open source, multi-platform software has been successfully used to interpret metabolomic experiments and will enable others using filtered, high mass accuracy mass spectrometric data sets to build and analyse networks. AVAILABILITY: http://compbio.dcs.gla.ac.uk/fabien/abinitio/abinitio.html

Authors: Fabien Jourdan, , Michael P Barrett, David Gilbert

Date Published: 14th Nov 2007

Publication Type: Not specified

Abstract (Expand)

This paper briefly describes the SABIO-RK database model for the storage of reaction kinetics information and the guidelines followed within the SABIO-RK project to annotate the kinetic data. Such annotations support the definition of cross links to other related databases and augment the semantics of the data stored in the database.

Authors: , Martin Golebiewski, , , Saqib Mir, Andreas Weidemann, Ulrike Wittig

Date Published: 14th Sep 2007

Publication Type: Journal

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH