Assays
What is an Assay?Filters
Model that eliminates several light inputs. RVE8, NOX are incorporated. Individual representation of CCA1 and LHY. Several changes in conections and light inputs. Fogelmark reports eight parameter sets. This SBML file contains the first parameter set Related PublicationsFogelmark K, Troein C (2014). Rethinking transcriptional activation in the Arabidopsis circadian clock.. PLoS Comput Biology. Retrieved from: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003705Originally ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Urquiza Garcia, Uriel
Study: F2014.1 - PLM_1030
The model is an extensio of PLM_67v3 with an additional an additional variable Temp in ODE 25. This change allows to simulated warm pulses that affect EC stability using COPASI.
Originally submitted to PLaSMo on 2014-03-10 13:16:25
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Urquiza Garcia, Uriel
The models in this record were published in Flis et al. Royal Society Open Biology 2015. They will be submitted to Biomodels when we have a PubMed ID for the paper.
Original model: Arabidopsis clock model P2011.1.1 from Pokhilko et al. Mol Syst. Biol. 2012, http://dx.doi.org/10.1038/msb.2012.6
Published version is Biomodels ID 00412, http://www.ebi.ac.uk/compneur-srv/biomodels-main/BIOMD0000000412 Also public in Plasmo as PLM_64, with several versions, http://www.plasmo.ed.ac.uk/plasmo/models/model.shtml?accession=PLM_64 ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Millar, Andrew (ex-PlaSMo models)
The models in this record were published in Flis et al. Royal Society Open Biology 2015. They will be submitted to Biomodels when we have a PubMed ID for the paper.
Original model: Arabidopsis clock model P2011.1.1 from Pokhilko et al. Mol Syst. Biol. 2012, http://dx.doi.org/10.1038/msb.2012.6
Published version is Biomodels ID 00412, http://www.ebi.ac.uk/compneur-srv/biomodels-main/BIOMD0000000412 Also public in Plasmo as PLM_64, with several versions, http://www.plasmo.ed.ac.uk/plasmo/models/model.shtml?accession=PLM_64 ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Millar, Andrew (ex-PlaSMo models)
This model is one of five new parameter sets for P2011, published in Flis et al. Royal Society Open Biology 2015. They will be submitted to Biomodels when we have a PubMed ID for the paper. Derived from Original model: P2011.1.2 is public model ID PLM_71 version 1, http://www.plasmo.ed.ac.uk/plasmo/models/download.shtml?accession=PLM_71&version=1 This model P2011.6.1 is public model ID PLM_1044, with parameters optimised by Kevin Stratford using SBSInumerics software on the UK national ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Millar, Andrew (ex-PlaSMo models)
This model is one of five new parameter sets for P2011, published in Flis et al. Royal Society Open Biology 2015. They will be submitted to Biomodels when we have a PubMed ID for the paper. Derived from Original model: P2011.1.2 is public model ID PLM_71 version 1, http://www.plasmo.ed.ac.uk/plasmo/models/download.shtml?accession=PLM_71&version=1 This model P2011.3.1 is public model ID PLM_1041, with parameters optimised by Kevin Stratford using SBSInumerics software on the UK national ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Millar, Andrew (ex-PlaSMo models)
This model is termed P2011 and derives from the article: The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Alexandra Pokhilko, Aurora Piñas Fernández, Kieron D Edwards, Megan M Southern, Karen J Halliday & Andrew J Millar Mol. Syst. Biol. 2012; 8: 574, submitted 9 Aug 2011 and published 6 March 2012. Link Link to Supplementary Information, including equations. Minor errors in the published Supplementary Information are described in a file attached ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Millar, Andrew (ex-PlaSMo models)
This model is termed P2011 and derives from the article: The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Alexandra Pokhilko, Aurora Piñas Fernández, Kieron D Edwards, Megan M Southern, Karen J Halliday & Andrew J Millar Mol. Syst. Biol. 2012; 8: 574, submitted 9 Aug 2011 and published 6 March 2012. Link Link to Supplementary Information, including equations. Minor errors in the published Supplementary Information are described in a file attached ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Zielinski, Tomasz
Study: 1 hidden item
This is the SimileXML for the Salazar2009_FloweringPhotoperiod model in PlaSMo. It corresponds to Model 3 in the publication of Salazar et al 2009. The Simile version of this model is also attached here. Instructions to run the Photoperiodism Model in Simile 1. Save all the files into the same folder. 2. Copy and paste the attached ‘lightfunction.pl’ file in the following folder: Program File > Simile6.0 (or other software version)> Functions 3. Download the ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Existing models that were re-factored and integ...
This is the SimileXML for the Salazar model linked to the T6P/TPS pathway (Wahl et al. Science 2013). The Simile version of this model and the parameter file are also attached here. Time series data of T6P and FT mRNA for Col wild type and tps1 mutant from Fig. 1 in Wahl et al were used to re-optimise Bco, KCO, kT6P and vT6P (which replaces VCO). Note: This set of parameter values has only been optimised and tested for a 16:8 light:dark cycle, and the initial values in the Simile model are for ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Existing models that were re-factored and integ...
This is part of the GreenLab Functional-Structural Plant Model for Arabidopsis published in Christophe et al 2008. This model was re-factored, to facilitate the integration in the Chew et al Framework Model, and it cannot be run as a standalone model. Related PublicationsAngélique Christophe A E, Véronique Letort B, Irène Hummel A, Paul-Henry Cournède B, Philippe de Reffye C, Jérémie Lecœur (2008). A model-based analysis of the dynamics of carbon balance at the whole-plant level in Arabidopsis ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Existing models that were re-factored and integ...
This is the Framework Model (Chew et al, PNAS 2014; http://www.pnas.org/content/early/2014/08/27/1410238111) that links the following: 1. Arabidopsis leaf carbohydrate model (Rasse and Tocquin) - Carbon Dynamic Model 2. Part of the Christophe et al 2008 Functional-Structural Plant Model 3. Chew et al 2012 Photothermal Model 4. Salazar et al 2009 Photoperiodism Model To run the model in Simile, please download the Evaluation Edition of the software from http://www.simulistics.com/products/simile.php ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Existing models that were re-factored and integ...
This is a photothermal model for Arabidopsis that predicts flowering time, published in Chew et al (2012). It is an improved version of the model in Wilczek et al (Science 2009). A Simile version of the model is attached. Instructions to run the Photothermal Model in Simile 1. Download the Simile file attached or import the XML into Simile: a. File > Import > XML Model Description 2. To run the model: a. Model > Run or click on the ‘Play’ ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Existing models that were re-factored and integ...
Related PublicationsMe and Helena (2014). some book. Moore A, Zielinski T, Millar AJ (2014). Online period estimation and determination of rhythmicity in circadian data, using the BioDare data infrastructure.. Methods in molecular biology (Clifton, N.J.). Retrieved from: doi.org/10.1007/978-1-4939-0700-7_2Stein JM (1975). The effect of adrenaline and of alpha- and beta-adrenergic blocking agents on ATP concentration and on incorporation of 32Pi into ATP in rat fat cells.. Biochemical pharmacology. ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Zielinski, Tomasz
Study: 1 hidden item
Related PublicationsMe and Helena (2014). some book. Moore A, Zielinski T, Millar AJ (2014). Online period estimation and determination of rhythmicity in circadian data, using the BioDare data infrastructure.. Methods in molecular biology (Clifton, N.J.). Retrieved from: doi.org/10.1007/978-1-4939-0700-7_2Stein JM (1975). The effect of adrenaline and of alpha- and beta-adrenergic blocking agents on ATP concentration and on incorporation of 32Pi into ATP in rat fat cells.. Biochemical pharmacology. ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Zielinski, Tomasz
Study: 1 hidden item
Related PublicationsMe and Helena (2014). some book. Moore A, Zielinski T, Millar AJ (2014). Online period estimation and determination of rhythmicity in circadian data, using the BioDare data infrastructure.. Methods in molecular biology (Clifton, N.J.). Retrieved from: doi.org/10.1007/978-1-4939-0700-7_2Stein JM (1975). The effect of adrenaline and of alpha- and beta-adrenergic blocking agents on ATP concentration and on incorporation of 32Pi into ATP in rat fat cells.. Biochemical pharmacology. ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Zielinski, Tomasz
Study: 1 hidden item
Related PublicationsMe and Helena (2014). some book. Moore A, Zielinski T, Millar AJ (2014). Online period estimation and determination of rhythmicity in circadian data, using the BioDare data infrastructure.. Methods in molecular biology (Clifton, N.J.). Retrieved from: doi.org/10.1007/978-1-4939-0700-7_2Stein JM (1975). The effect of adrenaline and of alpha- and beta-adrenergic blocking agents on ATP concentration and on incorporation of 32Pi into ATP in rat fat cells.. Biochemical pharmacology. ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Zielinski, Tomasz
Study: 1 hidden item
Related PublicationsMe and Helena (2014). some book. Moore A, Zielinski T, Millar AJ (2014). Online period estimation and determination of rhythmicity in circadian data, using the BioDare data infrastructure.. Methods in molecular biology (Clifton, N.J.). Retrieved from: doi.org/10.1007/978-1-4939-0700-7_2Stein JM (1975). The effect of adrenaline and of alpha- and beta-adrenergic blocking agents on ATP concentration and on incorporation of 32Pi into ATP in rat fat cells.. Biochemical pharmacology. ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Zielinski, Tomasz
Study: 1 hidden item
Related PublicationsMe and Helena (2014). some book. Moore A, Zielinski T, Millar AJ (2014). Online period estimation and determination of rhythmicity in circadian data, using the BioDare data infrastructure.. Methods in molecular biology (Clifton, N.J.). Retrieved from: doi.org/10.1007/978-1-4939-0700-7_2Stein JM (1975). The effect of adrenaline and of alpha- and beta-adrenergic blocking agents on ATP concentration and on incorporation of 32Pi into ATP in rat fat cells.. Biochemical pharmacology. ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Zielinski, Tomasz
Study: 1 hidden item
Related PublicationsMe and Helena (2014). some book. Moore A, Zielinski T, Millar AJ (2014). Online period estimation and determination of rhythmicity in circadian data, using the BioDare data infrastructure.. Methods in molecular biology (Clifton, N.J.). Retrieved from: doi.org/10.1007/978-1-4939-0700-7_2Stein JM (1975). The effect of adrenaline and of alpha- and beta-adrenergic blocking agents on ATP concentration and on incorporation of 32Pi into ATP in rat fat cells.. Biochemical pharmacology. ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Zielinski, Tomasz
Study: 1 hidden item
Related PublicationsMe and Helena (2014). some book. Moore A, Zielinski T, Millar AJ (2014). Online period estimation and determination of rhythmicity in circadian data, using the BioDare data infrastructure.. Methods in molecular biology (Clifton, N.J.). Retrieved from: doi.org/10.1007/978-1-4939-0700-7_2Stein JM (1975). The effect of adrenaline and of alpha- and beta-adrenergic blocking agents on ATP concentration and on incorporation of 32Pi into ATP in rat fat cells.. Biochemical pharmacology. ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Zielinski, Tomasz
Study: 1 hidden item
Photothermal model for Arabidopsis development, as published, converted to Simile format by Yin-Hoon Chew. Note that the XML file is just a dummy SBML file, the .SML is the working model file. Simile can read csv files (as attached) for meteorological data (hourly temperature, sunrise, sunset). Users only need to change the directory of the input variables. I have also attached the set of parameter values for each genotype.Related PublicationsWilczek et al. (2009). Effects of Genetic Perturbation ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Millar, Andrew (ex-PlaSMo models)
Photothermal model for Arabidopsis development, as published, converted to Simile format by Yin-Hoon Chew. Note that the XML file is just a dummy SBML file, the .SML is the working model file. Simile can read csv files (as attached) for meteorological data (hourly temperature, sunrise, sunset). Users only need to change the directory of the input variables. I have also attached the set of parameter values for each genotype.Related PublicationsWilczek et al. (2009). Effects of Genetic Perturbation ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Millar, Andrew (ex-PlaSMo models)
Detailed model of starch metabolism from Sorokina et al. BMC Sys Bio 2011. First upload is a draft.
Related Publications
Sorokina et al (2011). BMicroarray data can predict diurnal changes of starch content in the picoalga Ostreococcus.. BMC Systems Biology. Retrieved from: http://www.ncbi.nlm.nih.gov/pubmed/21352558
Originally submitted to PLaSMo on 2011-08-12 15:34:00
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Millar, Andrew (ex-PlaSMo models)
The model shows how the CONSTANS gene and protein in Arabidopsis thaliana forms a day-length sensor. It corresponds to Model 3 in the publication of Salazar et al. 2009. Matlab versions of all the models in the paper are attached to this record as a ZIP archive, as are all the data waveforms curated from the literature to constrain the model. Further information may be available via links from the authors web site (www.amillar.org). Simulation notes for SBML version of Model3 from Salazar et al., ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Millar, Andrew (ex-PlaSMo models)
The model shows how the CONSTANS gene and protein in Arabidopsis thaliana forms a day-length sensor. It corresponds to Model 3 in the publication of Salazar et al. 2009. Matlab versions of all the models in the paper are attached to this record as a ZIP archive, as are all the data waveforms curated from the literature to constrain the model. Further information may be available via links from the authors web site (www.amillar.org). Simulation notes for SBML version of Model3 from Salazar et al., ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Millar, Andrew (ex-PlaSMo models)
Andrew's work-in-progress P2012 version. NB KNOWN PROBLEMS do not use lightly. Derived from PLM_49, after removing ABA regulation and tidying up the SBML in COPASI. Please see version comments for IMPORTANT notes.Comments No parameters constrained in version 1 file. 2013-02-26 17:31:26 3 amillar2 andrew.millar@ed.ac.uk Compiled successfully in SBSI for optimisation. 2013-02-26 17:28:18 3 amillar2 andrew.millar@ed.ac.ukVersion Comments Version 2 is file P2012_fin_NoABAv4.xml of 6th March.
It ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Millar, Andrew (ex-PlaSMo models)
Study: P2012_AJMv2_NoABA - PLM_69
Andrew's work-in-progress P2012 version. NB KNOWN PROBLEMS do not use lightly. Derived from PLM_49, after removing ABA regulation and tidying up the SBML in COPASI. Please see version comments for IMPORTANT notes.Comments No parameters constrained in version 1 file. 2013-02-26 17:31:26 3 amillar2 andrew.millar@ed.ac.uk Compiled successfully in SBSI for optimisation. 2013-02-26 17:28:18 3 amillar2 andrew.millar@ed.ac.ukVersion Comments Version 1 is file P2012_NoSinkNoABAParamsNom38_freshCopasi.xml ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Millar, Andrew (ex-PlaSMo models)
Study: P2012_AJMv2_NoABA - PLM_69
Draft of MEP pathway for isoprenoid synthesis, created 2012-2013 by Oender Kartal in the Gruissem lab. He notes "It contains some annotations and references for the parameter values and rate equations and produces a stable steady state, so you can do some control analysis. It simulates day-metabolism, since the MEP Pathway is supposedly active during the day." Unpublished, for use by TiMet consortium only.
Originally submitted to PLaSMo on 2013-09-13 09:10:53
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Millar, Andrew (ex-PlaSMo models)
Study: OK MEP pathway 2013 - PLM_72
This is a version derived from a model from the article: Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Locke JC, Kozma-Bognár L, Gould PD, Fehér B, Kevei E, Nagy F, Turner MS, Hall A, Millar AJ Mol. Syst. Biol.2006;Volume:2;Page:59 17102804, The model describes a three loop circuit of the Arabidopsis circadian clock. It provides initial conditions, parameter values and reactions for the production rates of the following species: LHY ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Millar, Andrew (ex-PlaSMo models)