Adjusted model to test the model's ability to predict palmitoyl-CoA and octanoyl-CoA dehydrogenation in human liver lysate, with and without anti-MCAD and anti-VLCAD antibodies. Data from Aoyama et al. (1995).
SEEK ID: https://fairdomhub.org/models/834?version=1
1 item is associated with this Model:Organism: Homo sapiens
Model type: Ordinary differential equations (ODE)
Model format: SBML
Execution or visualisation environment: JWS Online
Model image: No image specified
Export PNG
Creators
Submitter
Views: 668 Downloads: 38 Runs: 0
Created: 23rd Feb 2023 at 14:56
Last updated: 13th Jun 2023 at 14:53
This item has not yet been tagged.
None
Version History
Version 1 (earliest) Created 23rd Feb 2023 at 14:56 by Christoff Odendaal
No revision comments
Related items
Projects: SilicoTryp, Multiscale modelling of state transitions in the host-microbiome-brain network, MESI-STRAT, PoLiMeR - Polymers in the Liver: Metabolism and Regulation
Institutions: University of Groningen
https://orcid.org/0000-0001-6274-3633I am a Professor in Medical Systems Biology and the University Medical Centre Groningen. The research in my lab is focused on complex regulation of mammalian lipid and carbohydrate metabolism, eventually aiming at network-based therapies. We combine dynamic computer simulations with quantitative metabolomics, 13C fluxomics, proteomics and transcriptome analysis, and in depth biochemical analysis. This allows to predict and understand ‘emergent’ properties, those properties that are counterintuitive ...
Projects: PoLiMeR - Polymers in the Liver: Metabolism and Regulation
Institutions: University of Leiden
Projects: PoLiMeR - Polymers in the Liver: Metabolism and Regulation
Institutions: University Medical Centre Groningen
PoLiMeR is funded through the EU Marie Skłodowska-Curie Innovative Training Network (ITN), which drives scientific excellence and innovation. ITNs bring together universities, research institutes, industry and clinical partners from across the world to train researchers to doctorate level.
Metabolic diseases are a burden on the European population and health care system. It is increasingly recognised that individual differences with respect to history, lifestyle, and genetic make-up affect disease ...
Programme: This Project is not associated with a Programme
Public web page: http://polimer-itn.eu/
Organisms: Homo sapiens, Mus musculus, Rattus norvegicus
Submitter: Christoff Odendaal
Studies: Model analysis, Model construction, Model validation
Assays: ACAD activity partitioning, Comparing acyl-CoA dehydrogenase deficiencies, HepG2 oxygen consumption, Kinetics Minireviews, MCADD patient personalised modelling, MCADD rescue titration, Metabolic control analysis, Models, Predicting urinary acylcarnitines under metabolic decompensation., Whole-body ketogenic flux
Snapshots: Snapshot 1
Submitter: Christoff Odendaal
Investigation: Mitochondrial fatty acid oxidation in human liver
Assays: Kinetics Minireviews, Models
Snapshots: No snapshots
Submitter: Christoff Odendaal
Investigation: Mitochondrial fatty acid oxidation in human liver
Assays: ACAD activity partitioning, HepG2 oxygen consumption, Whole-body ketogenic flux
Snapshots: No snapshots
Submitter: Christoff Odendaal
Biological problem addressed: Model Analysis Type
Investigation: Mitochondrial fatty acid oxidation in human liver
Study: Model construction
Organisms: No organisms
Models: Model notebooks, odendaal1, odendaal2, odendaal3
SOPs: Parameter Search SOP
Data files: No Data files
Snapshots: No snapshots
Testing the model's ability to predict palmitoyl-CoA and octanoyl-CoA dehydrogenation in human liver lysate, with and without anti-MCAD and anti-VLCAD antibodies. Generates Fig. 2 C and D in the associated publication. Data from Aoyama et al. (1995).
Downoad and unzip "Model_notebooks.rar" and run "6, Fig2C+D-ACAD-partitioning-validation-[needs-(1)]-20221109.nb" after running "1, generate-model-20221109.nb".
Submitter: Christoff Odendaal
Biological problem addressed: Validation
Investigation: Mitochondrial fatty acid oxidation in human liver
Study: Model validation
Organisms: No organisms
Models: Model notebooks, odendaal3
SOPs: No SOPs
Data files: No Data files
Snapshots: No snapshots