Experimental data for determination of half-life of gluconeogenic intermediates (BPG, GAP and DHAP).
Export PNG
Views: 5650 Downloads: 161
Created: 1st Aug 2013 at 15:00
This item has not yet been tagged.
None
Version History
Version 1 (earliest) Created 1st Aug 2013 at 15:00 by Jacky Snoep
No revision comments
Related items
Projects: SulfoSys, SulfoSys - Biotec, Glucose metabolism in cancer cell lines
Institutions: University Duisburg-Essen, Stellenbosch University
Projects: PSYSMO, MOSES, SysMO DB, SysMO-LAB, SulfoSys, SulfoSys - Biotec, Whole body modelling of glucose metabolism in malaria patients, FAIRDOM, Molecular Systems Biology, COMBINE Multicellular Modelling, HOTSOLUTE, Steroid biosynthesis, Yeast glycolytic oscillations, Computational pathway design for biotechnological applications, SCyCode The Autotrophy-Heterotrophy Switch in Cyanobacteria: Coherent Decision-Making at Multiple Regulatory Layers, Project Coordination, WP 3: Drug release kinetics study, Glucose metabolism in cancer cell lines
Institutions: Manchester Centre for Integrative Systems Biology, University of Manchester, University of Stellenbosch, University of Manchester - Department of Computer Science, Stellenbosch University
SysMO is a European transnational funding and research initiative on "Systems Biology of Microorganisms".
The goal pursued by SysMO was to record and describe the dynamic molecular processes going on in unicellular microorganisms in a comprehensive way and to present these processes in the form of computerized mathematical models.
Systems biology will raise biomedical and biotechnological research to a new quality level and contribute markedly to progress in understanding. Pooling European research ...
Projects: BaCell-SysMO, COSMIC, SUMO, KOSMOBAC, SysMO-LAB, PSYSMO, SCaRAB, MOSES, TRANSLUCENT, STREAM, SulfoSys, SysMO DB, SysMO Funders, SilicoTryp, Noisy-Strep
Web page: http://sysmo.net/
Silicon cell model for the central carbohydrate metabolism of the archaeon Sulfolobus solfataricus under temperature variation
Programme: SysMO
Public web page: http://sulfosys.com/
Organisms: Sulfolobus solfataricus
An investigation in the central carbon metabolism of S. solfataricus with a focus on the unique temperature adaptations and regulation; using a combined modelling and experimental approach.
Submitter: Jacky Snoep
Studies: Carbon Loss at High Temperature, Model Gluconeogenesis
Assays: Experimental Validation Gluconeogenesis in S. solfataricus, FBPAase, FBPAase Modelling, GAPDH, GAPDH Modelling, Model Validation Gluconeogenesis in S. solfataricus, Modelling Metabolite Degradation at High Temperature, PGK, PGK Modelling, Reconstituted Gluconeogenesis System, TPI, TPI Modelling, Temperature Degradation of Gluconeogenic Intermediates
Snapshots: No snapshots
Mathematical model of a subset of reactions comprising the three most temperature sensitive intermediates of the gluconeogenic pathway in S. solfataricus
Submitter: Jacky Snoep
Investigation: Central Carbon Metabolism of Sulfolobus solfata...
Assays: FBPAase, FBPAase Modelling, GAPDH, GAPDH Modelling, Modelling Metabolite Degradation at High Temperature, PGK, PGK Modelling, Reconstituted Gluconeogenesis System, TPI, TPI Modelling, Temperature Degradation of Gluconeogenic Intermediates
Snapshots: No snapshots
Temperature degradation of BPG, GAP and DHAP
Submitter: Jacky Snoep
Assay type: Metabolite Concentration
Technology type: Technology Type
Investigation: Central Carbon Metabolism of Sulfolobus solfata...
Study: Model Gluconeogenesis
Organisms: Sulfolobus solfataricus
SOPs: No SOPs
Data files: Temperature Degradation of Gluconeogenic Interm...
Snapshots: No snapshots
Modelling the degradation of BPG, GAP and DHAP at high temperature
Submitter: Jacky Snoep
Biological problem addressed: Metabolism
Investigation: Central Carbon Metabolism of Sulfolobus solfata...
Study: Model Gluconeogenesis
Organisms: Sulfolobus solfataricus
Models: Kinetic Model of Temperature Degradation of Glu...
SOPs: No SOPs
Data files: Temperature Degradation Kinetics Simulation, Temperature Degradation of Gluconeogenic Interm...
Snapshots: No snapshots