Simulations of stressosome activation emphasize allosteric interactions between RsbR and RsbT

Abstract:

Background The stressosome is a bacterial signalling complex that responds to environmental changes by initiating a protein partner switching cascade, which leads to the release of the alternative sigma factor, sigmaB. Stress perception increases the phosphorylation of the stressosome sensor protein, RsbR, and the scaffold protein, RsbS, by the protein kinase RsbT. Subsequent dissociation of RsbT from the stressosome activates the sigmaB cascade. However, the sequence of physical events that occur in the stressosome during signal transduction is insufficiently understood.

Results Here, we use computational modelling to correlate the structure of the stressosome with the efficiency of the phosphorylation reactions that occur upon activation by stress. In our model, the phosphorylation of any stressosome protein is dependent upon its nearest neighbours and their phosphorylation status. We compare different hypotheses about stressosome activation and find that only the model representing the allosteric activation of the kinase RsbT, by phosphorylated RsbR, qualitatively reproduces the experimental data.

Conclusions Our simulations and the associated analysis of published data support the following hypotheses: (i) a simple Boolean model is capable of reproducing stressosome dynamics, (ii) different stressors induce identical stressosome activation patterns, and we also confirm that (i) phosphorylated RsbR activates RsbT, and (ii) the main purpose of RsbX is to dephosphorylate RsbS-P.

SEEK ID: https://fairdomhub.org/publications/205

DOI: 10.1186/1752-0509-7-3

Projects: BaCell-SysMO

Publication type: Not specified

Journal: BMC Syst Biol

Citation:

Date Published: 2013

Registered Mode: Not specified

Authors: , , Jon Marles-Wright, ,

help Submitter
Citation
Liebal, U. W., Millat, T., Marles-Wright, J., Lewis, R. J., & Wolkenhauer, O. (2013). Simulations of stressosome activation emphasize allosteric interactions between RsbR and RsbT. In BMC Systems Biology (Vol. 7, Issue 1, p. 3). Springer Science and Business Media LLC. https://doi.org/10.1186/1752-0509-7-3
Activity

Views: 5472

Created: 15th Jan 2013 at 13:19

Last updated: 8th Dec 2022 at 17:26

help Tags

This item has not yet been tagged.

help Attributions

None

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH