Studies
What is a Study?Filters
Submitter: Andrew Millar
Investigation: Absolute units for proteins in Arabidopsis cloc...
Assays: promoter binding affinity calculations on the genome based on PBMs and E...
Files required for reproducibility of computational results. This include Docker file and python packages
Submitter: Uriel Urquiza Garcia
Investigation: Absolute units for proteins in Arabidopsis cloc...
Assays: Python packages
Clock mutants for lhy-1/cca1-11, prr9/7, toc1, lux-4, elf3-1 were transformed with the genomic regions of the associated clock genes tagged with NanoLUC-3FLAG-10His. The tagged genomic constructs were transformed in the mutants using Agrobcterium ABI strain (kindly donated by Prof. Seth Davis University of York). T3 plants resistant to homozygous for BASTA resistance were phenotyped by luciferase imaging asessing period phenotype or plant architecture. Rescuing lines were then used for performing ...
Submitter: Andrew Millar
Investigation: Absolute units for proteins in Arabidopsis cloc...
Assays: Jupyter notebook Predicting Protein Numbers, Protein level time series, TiMet RNA timeseries data
Modelling and experiments for FMv2 components.
Simulations, parameter sensitivity analysis etc. for FMv2
Submitter: Andrew Millar
Investigation: Prediction and analysis of phenotypes in the Ar...
Assays: Relationship among FMv2 outputs, Sensitivity analysis of FMv2
Modelling and experiments for FMv2 as a whole; Testing Framework Model version 2 (FMv2)
Submitter: Andrew Millar
Investigation: Prediction and analysis of phenotypes in the Ar...
Assays: Biomass and metabolites, FMv2 simulation
Modelling and experiments for FMv2 as a whole; Testing Framework Model version 2 (FMv2)
Submitter: Andrew Millar
Investigation: Prediction and analysis of phenotypes in the Ar...
Assays: Biomass and metabolites, FMv2 simulation
Modelling and experiments for FMv2 as a whole; Testing Framework Model version 2 (FMv2)
Submitter: Andrew Millar
Investigation: Prediction and analysis of phenotypes in the Ar...
Model simulations compared to experimental data from the literature (publications from Mizuno lab are linked), testing the FMv2.
Submitter: Andrew Millar
Investigation: Prediction and analysis of phenotypes in the Ar...
Assays: Mizuno lab, Flowering time in clock mutants, Mizuno lab, Hypocotyl length in clock mutants
Modelling and experiments for FMv2 as a whole; Testing Framework Model version 2 (FMv2)
Submitter: Andrew Millar
Investigation: Prediction and analysis of phenotypes in the Ar...
Assays: Biomass, leaf number and metabolites, FMv2 simulation
Follow-up to the validation experiments on FMv2, testing candidate mechanisms for high malate and fumarate accumulation in the Arabidopsis double mutant prr7prr9 and its parent accession Col. New collaborations with the groups of Teresa Fitzpatrick and TiMet partner Samuel Zeeman.
Submitter: Andrew Millar
Investigation: Prediction and analysis of phenotypes in the Ar...
Assays: Assimilation and partitioning of 14CO2 at night, Thiamine vitamers
Assorted files prepared during the publication process of the FMv2, its validation and testing, mostly focussed on the Arabidopsis double mutant prr7prr9 and its parent accession Col. Data from other studies that are described separately, and linked by Atribution to the File records under this Study.
Submitter: Andrew Millar
Investigation: Prediction and analysis of phenotypes in the Ar...
Collection of models used in the introduction of absolute units into A. thaliana circadian clock models, with software resources and documentation. The models are inspired by P2011, published in Pokhilko et al 2012. The study contains Assays that link to the P2011 starting model and the models U2019.1 - .3 and U2020.1 - .3. Each model is shared as a human-readable file in the Antimony language and the associated, machine-readable SBML file, which was automatically generated using the SBML export ...
Submitter: Uriel Urquiza Garcia
Investigation: Absolute units in Arabidopsis clock models up t...
Assays: P2011.1.2, Reproducibility tool set, U2019/U2020 models
The P2011 model (linked in the Assay below) was rescaled to match TiMet RNA data in clock mutants from Flis et al. 2015, also linked here as separate mean and SD files. The raw TiMet data is available elsewhere on FAIRDOMHub.
Submitter: Andrew Millar
Investigation: Absolute units in Arabidopsis clock models up t...
Assays for model composition here, in order to share model files; potentially training and validation data in other Studies.
Submitter: Andrew Millar
Investigation: Temperature effects on Arabidopsis floral induc...
Submitter: Andrew Millar
Investigation: Arabidopsis flowering in natural long days
Assays: No Assays
The models in this record were published in Flis et al. Royal Society Open Biology 2015. Their original IDs in the PlaSMo resource and IDs in Biomodels are given below. Please select files for download from the 'Related Items' list or the object tree/graph, below. 'SUBMITTED' is the original model version; 'SIMPLIFIED' removes SBML elements that were incompatible with SloppyCell software.
Original model: Arabidopsis clock model P2011.1.1 from Pokhilko et al. Mol Syst. Biol. 2012, ...
Photothermal model for Arabidopsis development, as published, converted to Simile format by Yin-Hoon Chew. Note that the XML file is just a dummy SBML file, the .SML is the working model file. Simile can read csv files (as attached) for meteorological data (hourly temperature, sunrise, sunset). Users only need to change the directory of the input variables. I have also attached the set of parameter values for each genotype.Related PublicationsWilczek et al. (2009). Effects of Genetic Perturbation ...
Submitter: BioData SynthSys
Investigation: Millar, Andrew (ex-PlaSMo models)
Assays: Wilczek photothermal Science - PLM_48, version 1, Wilczek photothermal Science - PLM_48, version 2
Detailed model of starch metabolism from Sorokina et al. BMC Sys Bio 2011. First upload is a draft.
Related Publications
Sorokina et al (2011). BMicroarray data can predict diurnal changes of starch content in the picoalga Ostreococcus.. BMC Systems Biology. Retrieved from: http://www.ncbi.nlm.nih.gov/pubmed/21352558
Originally submitted to PLaSMo on 2011-08-12 15:34:00
Submitter: BioData SynthSys
Investigation: Millar, Andrew (ex-PlaSMo models)
The model shows how the CONSTANS gene and protein in Arabidopsis thaliana forms a day-length sensor. It corresponds to Model 3 in the publication of Salazar et al. 2009. Matlab versions of all the models in the paper are attached to this record as a ZIP archive, as are all the data waveforms curated from the literature to constrain the model. Further information may be available via links from the authors web site (www.amillar.org). Simulation notes for SBML version of Model3 from Salazar et al., ...
Submitter: BioData SynthSys
Investigation: Millar, Andrew (ex-PlaSMo models)
Assays: Salazar2009_FloweringPhotoperiod - PLM_9, version 1, Salazar2009_FloweringPhotoperiod - PLM_9, version 2
Andrew's work-in-progress P2012 version. NB KNOWN PROBLEMS do not use lightly. Derived from PLM_49, after removing ABA regulation and tidying up the SBML in COPASI. Please see version comments for IMPORTANT notes.
Originally submitted to PLaSMo on 2013-02-26 17:23:01
Submitter: BioData SynthSys
Investigation: Millar, Andrew (ex-PlaSMo models)
Assays: P2012_AJMv2_NoABA - PLM_69, version 1, P2012_AJMv2_NoABA - PLM_69, version 2
Draft of MEP pathway for isoprenoid synthesis, created 2012-2013 by Oender Kartal in the Gruissem lab. He notes "It contains some annotations and references for the parameter values and rate equations and produces a stable steady state, so you can do some control analysis. It simulates day-metabolism, since the MEP Pathway is supposedly active during the day." Unpublished, for use by TiMet consortium only.
Originally submitted to PLaSMo on 2013-09-13 09:10:53
Submitter: BioData SynthSys
Investigation: Millar, Andrew (ex-PlaSMo models)
This is a version derived from a model from the article: Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Locke JC, Kozma-Bognár L, Gould PD, Fehér B, Kevei E, Nagy F, Turner MS, Hall A, Millar AJ Mol. Syst. Biol.2006;Volume:2;Page:59 17102804, The model describes a three loop circuit of the Arabidopsis circadian clock. It provides initial conditions, parameter values and reactions for the production rates of the following species: LHY ...
Submitter: BioData SynthSys
Investigation: Millar, Andrew (ex-PlaSMo models)
This version is derived from a model from the article: Extension of a genetic network model by iterative experimentation and mathematical analysis. Locke JC, Southern MM, Kozma-Bognár L, Hibberd V, Brown PE, Turner MS, Millar AJ Mol. Syst. Biol. 2005; 1: 2005.0013 16729048, SBML model of the interlocked feedback loop network The model describes the circuit depicted in Fig. 4 and reproduces the simulations in Figure 5A and 5B. It provides initial conditions, parameter values and rules for the ...
Submitter: BioData SynthSys
Investigation: Millar, Andrew (ex-PlaSMo models)
Temperature-sensitive version of Pokhilko 2010 Arabidopsis clock model, from Biomodels BIOMD00273, prepared by Mirela Domijan for the Gould et al. paper on cryptochrome influences on circadian rhythms. Molecular Systems Biology 9 Article number: 650 doi:10.1038/msb.2013.7 Published online: 19 March 2013 Citation: Molecular Systems Biology 9:650 Network balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperatures Gould, Ugarte, Domijan et al. doi:10.1038/msb.2013.7Originally ...
Submitter: BioData SynthSys
Investigation: Millar, Andrew (ex-PlaSMo models)
Assays: DomijanTS_AtClock2011 - PLM_50, version 1, DomijanTS_AtClock2011 - PLM_50, version 2
A cell-level model of the Arabidopsis root elongation zone. This spatial model is divided up into biological cells which are further divided into simulation boxes. The original model was designed to investigate how canal cells can accumulate auxin over time rather than to investigate the transport of auxin through the canal cells per se. The main outputs of the simulations in the original paper were the steady state ratios of auxin in the canal cell protoplasts to that in the parenchyma cell ...
Submitter: BioData SynthSys
Investigation: Millar, Andrew (ex-PlaSMo models)
Assays: AuxSim full - PLM_30, version 1
A cell-level model of the Arabidopsis root elongation zone. This spatial model is divided up into biological cells which are further divided into simulation boxes. The original model was designed to investigate how canal cells can accumulate auxin over time rather than to investigate the transport of auxin through the canal cells per se. The main outputs of the simulations in the original paper were the steady state ratios of auxin in the canal cell protoplasts to that in the parenchyma cell ...
Submitter: BioData SynthSys
Investigation: Millar, Andrew (ex-PlaSMo models)
Assays: AuxSim - PLM_27, version 1