P2011.1.2 written in Antimony and converted in SBML using python package Tellurium. Parameters values correspond to P2011.1.2
SEEK ID: https://fairdomhub.org/assays/1219
Modelling analysis
Projects: Millar group
Investigation: Absolute units in Arabidopsis clock models up to U2020.3
Study: P2011, U2019 and U2020 models and modelling resources
Assay position:
Biological problem addressed: Model Analysis Type
Organisms: No organisms
Export PNG
Views: 920
Created: 19th Dec 2019 at 21:24
Last updated: 30th Jul 2021 at 09:54
This item has not yet been tagged.
Related items
Projects: Millar group, TiMet, PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops, POP - the Parameter Optimisation Problem, Regulation of flowering time in natural conditions, PlaSMo model repository
Institutions: University of Edinburgh
https://orcid.org/0000-0003-1756-3654Projects: Millar group, PlaSMo model repository, PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops, Light and plant development, Light control of leaf development, Toggle switch, Reduce Complexity (RCO) reconstruction, Model Driven Prime Editing, PULSE 2.0, Plant optogenetics
Institutions: University of Edinburgh, Heinrich Heine University of Düsseldorf
https://orcid.org/0000-0002-7975-5013SynthSys is the University of Edinburgh's research organisation in interdisciplinary, Synthetic and Systems Biology, founded in 2012 as the successor to the Centre for Systems Biology at Edinburgh (CSBE).
Projects: Millar group, PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops, TiMet, POP - the Parameter Optimisation Problem, Regulation of flowering time in natural conditions, PlaSMo model repository
Web page: http://www.synthsys.ed.ac.uk
Andrew Millar's research group, University of Edinburgh
Programme: SynthSys
Public web page: http://www.amillar.org
Organisms: Escherichia coli, Arabidopsis thaliana, Ostreococcus tauri
The dataset presents mathematical models of the gene regulatory network of the circadian clock, in the plant Arabidopsis thaliana. The work is published in Urquiza-Garcia and Millar, Testing the inferred transcription rates of a dynamic, gene network model in absolute units, In Silico Plants, 2021.
Starting from the P2011 model, this project corrects theoretical issues (EC steady state binding assumption) to form an intermediate model (first version U2017.1; published as U2019.1) model, rescales ...
Collection of models used in the introduction of absolute units into A. thaliana circadian clock models, with software resources and documentation. The models are inspired by P2011, published in Pokhilko et al 2012. The study contains Assays that link to the P2011 starting model and the models U2019.1 - .3 and U2020.1 - .3. Each model is shared as a human-readable file in the Antimony language and the associated, machine-readable SBML file, which was automatically generated using the SBML export ...
Submitter: Uriel Urquiza Garcia
Investigation: Absolute units in Arabidopsis clock models up t...
Assays: P2011.1.2, Reproducibility tool set, U2019/U2020 models
Snapshots: No snapshots
Model written in Antimony human-readable language and then translate into SBML using Tellurium
Creators: Uriel Urquiza Garcia, Andrew Millar
Submitter: Uriel Urquiza Garcia
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: Copasi
Organism: Arabidopsis thaliana
Investigations: Absolute units in Arabidopsis clock models up t...
Studies: P2011, U2019 and U2020 models and modelling res...
Assays: P2011.1.2
Model written in Antimony human-readable language, Model used in Pokhilko et al 2012
Creators: Uriel Urquiza Garcia, Andrew Millar
Submitter: Uriel Urquiza Garcia
Model type: Ordinary differential equations (ODE)
Model format: Not specified
Environment: Not specified
Organism: Arabidopsis thaliana
Investigations: Absolute units in Arabidopsis clock models up t...
Studies: P2011, U2019 and U2020 models and modelling res...
Assays: P2011.1.2