Follow-up to the validation experiments on FMv2, testing candidate mechanisms for high malate and fumarate accumulation in the Arabidopsis double mutant prr7prr9 and its parent accession Col. New collaborations with the groups of Teresa Fitzpatrick and TiMet partner Samuel Zeeman.
SEEK ID: https://fairdomhub.org/studies/938
Projects: Millar group, TiMet
Study position: 6
Experimentalists: Gavin George, Michael Moulin
Export PNG
Views: 900
Created: 8th Apr 2022 at 09:45
Last updated: 8th Apr 2022 at 17:54
This item has not yet been tagged.
Related items
Projects: Millar group, TiMet, PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops, POP - the Parameter Optimisation Problem, Regulation of flowering time in natural conditions, PlaSMo model repository
Institutions: University of Edinburgh
https://orcid.org/0000-0003-1756-3654SynthSys is the University of Edinburgh's research organisation in interdisciplinary, Synthetic and Systems Biology, founded in 2012 as the successor to the Centre for Systems Biology at Edinburgh (CSBE).
Projects: Millar group, PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops, TiMet, POP - the Parameter Optimisation Problem, Regulation of flowering time in natural conditions, PlaSMo model repository
Web page: http://www.synthsys.ed.ac.uk
Andrew Millar's research group, University of Edinburgh
Programme: SynthSys
Public web page: http://www.amillar.org
Organisms: Escherichia coli, Arabidopsis thaliana, Ostreococcus tauri
EU FP7 collaborative project TiMet, award number 245143. Funded 2010-2015. "TiMet assembles world leaders in experimental and theoretical plant systems biology to advance understanding of the regulatory interactions between the circadian clock and plant metabolism, and their emergent effects on whole-plant growth and productivity."
Programme: SynthSys
Public web page: http://timing-metabolism.eu/
Organisms: Arabidopsis thaliana, Ostreococcus tauri
Data, FMv2 model and simulations for the Chew et al. 2017 paper (bioRxiv https://doi.org/10.1101/105437 ), updated in 2022, mostly on the prr7 prr9 double mutant, with controls in lsf1 and prr7 single mutants. This is one of the outputs from the EU FP7 TiMet project, https://fairdomhub.org/projects/92.
This data archive was updated during submisson to the journal _in Silico _Plants in 2022, and a Snapshot was published. The updates are not changing the core data or the FMv2 model that has been ...
Submitter: Andrew Millar
Studies: Analysis of Framework Model version 2 (FMv2), Construction of Framework Model version 2 (FMv2), Test of FMv2, follow-on: mechanisms of malate/fumarate accumulation, Test of FMv2, photoperiodic flowering and hypocotyl elongation, Test of FMv2, study Gibberellins 1, Test of FMv2, study Laurel & Hardy 1, Test of FMv2, study Laurel & Hardy 2, Test of FMv2, study Laurel & Hardy 3, Tests of FMv2, compilations and figures
Assays: Assimilation and partitioning of 14CO2 at night, Biomass and metabolites, Biomass and metabolites, Biomass and metabolites, Biomass, leaf area and gas exchange data, Biomass, leaf number and metabolites, Circadian period analysis, Composition of FMv2, FMv2 simulation, FMv2 simulation, FMv2 simulation, Mizuno lab, Flowering time in clock mutants, Mizuno lab, Hypocotyl length in clock mutants, Relationship among FMv2 outputs, Sensitivity analysis of FMv2, Simulating clock gene expression with model P2011.1.2, Thiamine vitamers, TiMet WP1.1, Clock gene expression in clock mutants, TiMet WP1.1a Metabolite analysis of clock mutants
Snapshots: Snapshot 1
Follow-up to the validation experiments on FMv2, testing candidate mechanisms for high malate and fumarate accumulation in the Arabidopsis double mutant prr7prr9 and its parent accession Col.
In this study, 14CO2 labelling was used to test the rate of carbon assimilation in the dark at the end of the subjective night (starting about ZT21), which is indicative of PEPC activity in forming malate, and the subsequent partitioning of this labelled C into various cellular fractions. The short-period ...
Submitter: Andrew Millar
Assay type: Metabolite Profiling
Technology type: Technology Type
Investigation: Prediction and analysis of phenotypes in the Ar...
Organisms: Arabidopsis thaliana : Col-0 wild type (wild-type / wild-type), Arabidopsis thaliana : prr7-3 prr9-1 (T-DNA insertion PRR9;T-DNA insertion PRR7 / 28h circadian rhythm), Arabidopsis thaliana
SOPs: No SOPs
Data files: Carbon assimilation and partitioning in darkness
Snapshots: No snapshots
Follow-up to the validation experiments on FMv2, testing candidate mechanisms for high malate and fumarate accumulation in the Arabidopsis double mutant prr7prr9 and its parent accession Col.
In this study, thiamine vitamers were quantified to test whether the essential cofactor TDP had altered enzyme activities to affect the malate and fumarate levels, using existing plant samples harvested from am earlier L&H study.
Submitter: Andrew Millar
Assay type: Metabolite Profiling
Technology type: Technology Type
Investigation: Prediction and analysis of phenotypes in the Ar...
Organisms: Arabidopsis thaliana : Col-0 wild type (wild-type / wild-type), Arabidopsis thaliana : prr7-3 prr9-1 (T-DNA insertion PRR9;T-DNA insertion PRR7 / 28h circadian rhythm)
SOPs: No SOPs
Data files: Testing thiamine metabolites in Col and prr7prr9
Snapshots: No snapshots
14CO2 assimilation in the night-time, in plants of Col, prr7prr9; Ws, lhycca1 genotypes at 18 and 28 days, and partitioning among cellular fractions.
Creator: Gavin George, Samuel Zeeman
Submitter: Andrew Millar
Excel file with data on levels of thiamine and its metabolites TMP and active cofactor TDP, tested in Col and prr7prr9 samples from study Laurel and Hardy 3. Altered levels of TDP could potentially affect enzymes with TDP cofactors that metabolise malate and fumarate levels, altering their levels in prr7prr9.
Creators: Yin Hoon Chew, Michael Moulin, Teresa Fitzpatrick
Submitter: Andrew Millar
Investigations: Prediction and analysis of phenotypes in the Ar...
Studies: Test of FMv2, follow-on: mechanisms of malate/f...
Assays: Thiamine vitamers