Models
What is a Model?Filters
Here is a kinetic model (in COPASI format) of L. lactis glycolysis.
Creator: Mark Musters
Submitter: Mark Musters
Model type: Ordinary differential equations (ODE)
Model format: Copasi
Environment: Copasi
SBML description of L. lactis glycolysis. Same as the uploaded Copasi file
Creator: Mark Musters
Submitter: Mark Musters
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: Not specified
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Not specified
Model format: Not specified
Environment: Not specified
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Not specified
Model format: SBML
Environment: JWS Online
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Not specified
Model format: SBML
Environment: JWS Online
Creator: Malgorzata Adamczyk
Submitter: Malgorzata Adamczyk
Model type: Not specified
Model format: SBML
Environment: Not specified
Preliminary metabolic network of S. pyogenes including primary metabolism, polysaccharide metabolism, purine and pyrimidine biosoynthesis, teichoic acid biosynthesis, fatty acid and phospholipid bioynthesis, amino acid metabolism, vitamins and cofactors. The model still needs to be validated.
Creator: Jennifer Levering
Submitter: Jennifer Levering
Model type: Metabolic network
Model format: SBML
Environment: Not specified
Creator: Nadine Veith
Submitter: Nadine Veith
Model type: Partial differential equations (PDE)
Model format: SBML
Environment: Not specified
Batch and chemostat model of L lactis. Scope of the model is to provide a mechanistic explanation of the switch between mixed acid and homolactic fermentation.
Creator: domenico bellomo
Submitter: domenico bellomo
Model type: Partial differential equations (PDE)
Model format: Matlab package
Environment: Matlab
The principles of Stealthy Engineering (Adamczyk et al.: Biotechnology Journal 2012; 7(7):877-83) are illustrated in this model by emulating a cross engineering intervention between L. lactis and S. cerevisiae.
The case study consists of replacing the native glucose uptake system of L. lactis with that native to the yeast S. cerevisiae. A modified version of Hoefnagel et al.’s model of L. lacrtis’ central metabolism was used as starting point. The total functional replacement of the PTS with the ...
Creators: Malgorzata Adamczyk, Hans V. Westerhoff, Ettore Murabito
Submitter: Ettore Murabito
Model type: Ordinary differential equations (ODE)
Model format: Copasi
Environment: Copasi
A reconstruction of the cellular metabolism of the opportunistic human pathogen Enterococcus faecalis V583 represented as stoichiometric model and analysed using constraint-based modelling approaches
Creators: Nadine Veith, Margrete Solheim, Koen van Grinsven, Jennifer Levering, Jeroen Hugenholtz, Helge Holo, Ingolf Nes, Bas Teusink, Ursula Kummer, Brett G Olivier, Ruth Grosseholz
Submitter: Nadine Veith
Model type: Linear equations
Model format: SBML
Environment: Not specified
3D structure prediction of LDH enzymes from four LAB by comparative modeling against x-ray structure of LDH from B. stearothermophilis (template, PDB ID: 1LDN). The computation was performed with a protocol that uses "automodel.very_fast" settings of Modeller program (http://salilab.org/modeller/).
Creator: Anna Feldman-Salit
Submitter: Anna Feldman-Salit
Model type: Not specified
Model format: Not specified
Environment: Not specified
Comparison of electrostatic potentials within the allosteric binding sites of LDH enzymes to estimate the binding affinity of the FBP molecule is performed with the PIPSA program. The program uses the structure of enzymes in the PDB format and computed electrostatic potentials in the GRD format.
Creator: Anna Feldman-Salit
Submitter: Anna Feldman-Salit
Model type: Not specified
Model format: Not specified
Environment: Not specified
Computation is performed for the modeled 3D structures of LDH enzymes (in PDB format) with the UHBD program, for pH 6 and pH 7.
Creator: Anna Feldman-Salit
Submitter: Anna Feldman-Salit
Model type: Not specified
Model format: Not specified
Environment: Not specified
Binding energies of phosphate ions to the allosteric and catalytic sites were estimated with a program GRID (http://www.moldiscovery.com/soft_grid.php). The calculations were performed for the modeled LDH structures from four LABs, at pH 6 and 7, in presence and absence of the FBP molecule. The phosphate ion was presented as a probe.
Creator: Anna Feldman-Salit
Submitter: Anna Feldman-Salit
Model type: Not specified
Model format: Not specified
Environment: Not specified
In order to estimate whether Pi has an activatory or an inhibitory effect on the enzymes, the computed probe binding energies (from GRID results, Part 4) were compared with those for the LDH from L. plantarum whose activity is known to be unaffected by Pi.
The binding energies of the Pi probe in the allosteric binding site (AS) and the COO probe in the catalytic binding site (CS) of LDH from L. plantarum were defined as E¬AS,threshold and ECS,threshold, respectively. For the other LDH enzymes, ...
Creator: Anna Feldman-Salit
Submitter: Anna Feldman-Salit
Model type: Algebraic equations
Model format: Not specified
Environment: Not specified
Structural models of the LAB PYKs of L. lactis, L. plantarum, S. pyogenes and E. faecalis including the "best" docking solutions of potential allosteric ligands. The structures were derived by homology modeling based on the template of E. coli and B. stearothermophilus. PYK models and ligands are provided as .pdb files and can be displayed by using the program PyMOL, for instance.
Creators: Nadine Veith, Anna Feldman-Salit, Stefan Henrich, Rebecca Wade
Submitter: Nadine Veith
Model type: Not specified
Model format: Not specified
Environment: Not specified
The kinetic model includes sugar uptake, degradation of glucose into pyruvate and the fermentation of pyruvate.
Creator: Jennifer Levering
Submitter: Jennifer Levering
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
The kinetic model includes sugar uptake, degradation of glucose into pyruvate and the fermentation of pyruvate.
Creators: Jennifer Levering, Mark Musters
Submitter: Jennifer Levering
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online