SEEK ID: https://fairdomhub.org/people/975
Location: United Kingdom
ORCID: https://orcid.org/0000-0003-0467-104X
Joined: 6th Oct 2017
Expertise: Not specified
Tools: Not specified
Roles
Project administrator
- PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops
- Light and plant development
- Light control of leaf development
Asset housekeeper
- PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops
- Light and plant development
Asset gatekeeper
- PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops
- Light and plant development
Programme administrator
This person has not yet tagged anything.
Related items
- Programmes (3)
- Projects (3)
- Institutions (1)
- Investigations (2+1)
- Studies (0+2)
- Assays (1+1)
- Publications (4)
Plant development is strongly influenced by external light cues, yet we know very little of how this is mediated at a molecular level. This BBSRC funded project seeks to determine how phytochrome light receptor signalling connects with the developmental pathways to control plant architecture.
Projects: Light and plant development
Web page: http://hallidaylab.bio.ed.ac.uk
SynthSys is the University of Edinburgh's research organisation in interdisciplinary, Synthetic and Systems Biology, founded in 2012 as the successor to the Centre for Systems Biology at Edinburgh (CSBE).
Projects: Millar group, PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops, TiMet, POP - the Parameter Optimisation Problem, Regulation of flowering time in natural conditions, PlaSMo model repository
Web page: http://www.synthsys.ed.ac.uk
My lab studies how plants sense and respond to their environment. We specialise in signal integration. Learn more about what we do by exploring the web pages.
Projects: Light control of leaf development
Web page: http://hallidaylab.bio.ed.ac.uk/
For plants, light is a signal that carries information about the environment, and a source of energy for photosynthesis. PHYTOCAL focuses on the interaction between phytochrome signalling and photosynthesis, and seeks to understand fundamental processes that make carbon (C) and nitrogen (N) resources available for plant growth. These unexplored connections underlie biomass production and plasticity, which contribute significantly to yield variability in the field.
Programme: SynthSys
Public web page: http://hallidaylab.bio.ed.ac.uk/node/1
Organisms: Arabidopsis thaliana, Brassica rapa
This projects seeks to uncover how phytochrome signalling modulates leaf architecture
Organisms: Arabidopsis thaliana
How light control development
Programme: Modelling Light Control of Development
Public web page: Not specified
Start date: 1st Nov 2017
End date: 30th Nov 2021
Organisms: Arabidopsis thaliana
The dataset presents mathematical models of the gene regulatory network of the circadian clock, in the plant Arabidopsis thaliana. The work will be published as Urquiza-Garcia, Molina, Halliday and Millar, title "Abundant clock proteins point to missing molecular regulation in the plant circadian clock", in Molecular Systems Biology, 2025.
Starting from the U2019.3 and U2020.3 models, this project rescales parameters to match protein levels that were predicted using a simple model from the TiMet ...
Submitter: Andrew Millar
Studies: Construction of NanoLUC-tagged plants, Estimating DNA-binding affinities for Arabidopsis proteins, Measuring absolute levels of clock proteins with calibrated NanoLUC assays, Predicting absolute levels of clock proteins with a simple model, Recalibrating the clock models for absolute protein levels, to create mo..., Reproducibility documentation
Assays: Clock protein number determination with NanoLUC calibration, Clock proteins NanoLUC fusion raw data, Gatway maps of genomic regions of clock genes, In vivo bioluminescence of clock protein-NanoLUC fusions: example experi..., Jupyter notebook Predicting Protein Numbers, Propagating scaling factors into model parameters for U2019.4->U2019.5 a..., Protein level time series, Python packages, Reproducibility tool set, Selection of complemented transgenic lines, TiMet RNA timeseries data, promoter binding affinity calculations on the genome based on PBMs and E...
Snapshots: Snapshot 1
Data, models and simulations for the Chew et al. 2014 paper (PNAS, https://doi.org/10.1073/pnas.1410238111), using wild-type Arabidopsis ecotype Col-0 in standard 12hL:12hD growth conditions, compared to La(er) or Fei-0 accessions, or to plants overexpressing a micro RNA (miR156).
Submitter: Andrew Millar
Studies: Construction of Framework Model v1, Test of FMv1, growth study of Col-0 accession in 12L:12D, Test of FMv1, growth study of Col-0 accession in 5 photoperiods, Test of FMv1, growth study of other accessions and transgenic line in 12...
Assays: Arabidopsis Framework Model v1, Matlab and Simile version, Gas exchange of Fei-0 and Ler plants in 12hL:12hD, Growth of Col-0 and 35S:miR156 plants in 12hL:12hD, Growth of Col-0 in 12hL:12hD, Growth of Col-0 plants in 5 photoperiods, Growth of Fei-0 and Ler plants in 12hL:12hD
Snapshots: No snapshots
The reporter fusion constructs expressing clock proteins fused to NanoLUC or firefly FLUC were transformed into the cognate, clock-mutant host plants. Each host also contained a transcriptional FLUC fusion that was used to score the circadian period of each transgenic line in constant light. Transformants that expressed a functionally normal level of clock protein were selected by choosing lines that complemented the mutant's period defect back close to the wild type period. Note that the reporters ...
Submitter: Andrew Millar
Assay type: Transcriptional reporter gene
Technology type: Imaging
Investigation: Absolute units for proteins in Arabidopsis cloc...
Organisms: Arabidopsis thaliana : Col-0 wild type (wild-type / wild-type) (batch), Arabidopsis thaliana : prr7-3 prr9-1 (T-DNA insertion PRR9;T-DNA insertion PRR7 / 28h circadian rhythm) (batch)
SOPs: No SOPs
Data files: No Data files
Snapshots: No snapshots
Abstract (Expand)
Authors: Uriel Urquiza-García, Nacho Molina, Karen J. Halliday, Andrew J. Millar
Date Published: 3rd Sep 2024
Publication Type: Journal
DOI: 10.1101/2024.09.03.609973
Citation: biorxiv;2024.09.03.609973v1,[Preprint]
Abstract (Expand)
Authors: Y. H. Chew, B. Wenden, A. Flis, V. Mengin, J. Taylor, C. L. Davey, C. Tindal, H. Thomas, H. J. Ougham, P. de Reffye, M. Stitt, M. Williams, R. Muetzelfeldt, K. J. Halliday, A. J. Millar
Date Published: 10th Sep 2014
Publication Type: Not specified
PubMed ID: 25197087
Citation: Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):E4127-36. doi: 10.1073/pnas.1410238111. Epub 2014 Sep 2.
Abstract (Expand)
Authors: A. Pokhilko, A. P. Fernandez, K. D. Edwards, M. M. Southern, K. J. Halliday, A. J. Millar
Date Published: 6th Mar 2012
Publication Type: Not specified
PubMed ID: 22395476
Citation: Mol Syst Biol. 2012 Mar 6;8:574. doi: 10.1038/msb.2012.6.
Abstract
Authors: J. Krahmer, A. Ganpudi, A. Abbas, A. Romanowski, K. J. Halliday
Date Published: No date defined
Publication Type: Not specified
PubMed ID: 29254984
Citation: Plant Physiol. 2018 Feb;176(2):1039-1048. doi: 10.1104/pp.17.01437. Epub 2017 Dec 18.