RNA levels for control amplicons and multiple clock genes in 2 WT (Col, Ws) and 5 clock mutants of Arabidopsis, in biological duplicates, from three conditions: Diurnal cycle (12L/12D), Extended night (DD), Extended light (LL), harvested every 2 hours. Numbers are in transcript copy per cell, obtained assuming 1 g FW contains 25000000 cells. Comments: Data from LD are concateneted with DD and LL for better visualization. Toc1-101 (col-0) gi-201 (col-0) prr7-3 prr9-1 (col-0) , lhy cca1 (ws) elf3-4 (WS) Data published in Flis et al. Open Biology 2015, original file available from BioDare repository, see link attached.
Note for BioDare access - no login is required to access the file. Click 'Browse Public Resources' on the login screen, then return to this page and click the link to BioDare again, you should then gain access.
Export PNG
Views: 1272
Created: 1st Feb 2017 at 20:54
Last updated: 15th Apr 2022 at 10:35
None
Version History
Version 1 (earliest) Created 1st Feb 2017 at 20:54 by Andrew Millar
No revision comments
Related items
Projects: Millar group, TiMet, PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops, POP - the Parameter Optimisation Problem, Regulation of flowering time in natural conditions, PlaSMo model repository
Institutions: University of Edinburgh
https://orcid.org/0000-0003-1756-3654SynthSys is the University of Edinburgh's research organisation in interdisciplinary, Synthetic and Systems Biology, founded in 2012 as the successor to the Centre for Systems Biology at Edinburgh (CSBE).
Projects: Millar group, PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops, TiMet, POP - the Parameter Optimisation Problem, Regulation of flowering time in natural conditions, PlaSMo model repository
Web page: http://www.synthsys.ed.ac.uk
Andrew Millar's research group, University of Edinburgh
Programme: SynthSys
Public web page: http://www.amillar.org
Organisms: Escherichia coli, Arabidopsis thaliana, Ostreococcus tauri
Data, FMv2 model and simulations for the Chew et al. 2017 paper (bioRxiv https://doi.org/10.1101/105437 ), updated in 2022, mostly on the prr7 prr9 double mutant, with controls in lsf1 and prr7 single mutants. This is one of the outputs from the EU FP7 TiMet project, https://fairdomhub.org/projects/92.
This data archive was updated during submisson to the journal _in Silico _Plants in 2022, and a Snapshot was published. The updates are not changing the core data or the FMv2 model that has been ...
Submitter: Andrew Millar
Studies: Analysis of Framework Model version 2 (FMv2), Construction of Framework Model version 2 (FMv2), Test of FMv2, follow-on: mechanisms of malate/fumarate accumulation, Test of FMv2, photoperiodic flowering and hypocotyl elongation, Test of FMv2, study Gibberellins 1, Test of FMv2, study Laurel & Hardy 1, Test of FMv2, study Laurel & Hardy 2, Test of FMv2, study Laurel & Hardy 3, Tests of FMv2, compilations and figures
Assays: Assimilation and partitioning of 14CO2 at night, Biomass and metabolites, Biomass and metabolites, Biomass and metabolites, Biomass, leaf area and gas exchange data, Biomass, leaf number and metabolites, Circadian period analysis, Composition of FMv2, FMv2 simulation, FMv2 simulation, FMv2 simulation, Mizuno lab, Flowering time in clock mutants, Mizuno lab, Hypocotyl length in clock mutants, Relationship among FMv2 outputs, Sensitivity analysis of FMv2, Simulating clock gene expression with model P2011.1.2, Thiamine vitamers, TiMet WP1.1, Clock gene expression in clock mutants, TiMet WP1.1a Metabolite analysis of clock mutants
Snapshots: Snapshot 1
Modelling and experiments for FMv2 components.
Submitter: Andrew Millar
Investigation: Prediction and analysis of phenotypes in the Ar...
Assays: Composition of FMv2, Simulating clock gene expression with model P2011.1.2, TiMet WP1.1, Clock gene expression in clock mutants, TiMet WP1.1a Metabolite analysis of clock mutants
Snapshots: No snapshots
RNA timeseries data from TiMet for clock genes in prr7 prr9 and Col wild-type plants under 12L:12D cycle and LL
Submitter: Andrew Millar
Assay type: Gene Expression Profiling
Technology type: qRT-PCR
Investigation: Prediction and analysis of phenotypes in the Ar...
Organisms: Arabidopsis thaliana : Col-0 wild type (wild-type / wild-type), Arabidopsis thaliana : prr7-3 prr9-1 (T-DNA insertion PRR9;T-DNA insertion PRR7 / 28h circadian rhythm), Arabidopsis thaliana
SOPs: No SOPs
Data files: TiMet WP1.1 qRT-PCR LD to LL and DD
Snapshots: No snapshots
Comparison of simulated wild-type and prr7prr9 double mutant under 12L:12D cycles. Simulation with CVODE simulator via SBSI v1.5 framework.
Submitter: Andrew Millar
Biological problem addressed: Model Analysis Type
Investigation: Prediction and analysis of phenotypes in the Ar...
Organisms: Arabidopsis thaliana : Col-0 wild type (wild-type / wild-type), Arabidopsis thaliana : prr7-3 prr9-1 (T-DNA insertion PRR9;T-DNA insertion PRR7 / 28h circadian rhythm)
Models: Arabidopsis clock model P2011.1.2, P2011.1.2_directupload
SOPs: No SOPs
Data files: P2011.1.2 simulations and data in prr7 prr9 mut..., P2011.1.2 simulations of clock genes under LD c..., P2011.1.2 simulations vs. data for WT, normalis..., TiMet WP1.1 qRT-PCR LD to LL and DD
Snapshots: No snapshots
Abstract (Expand)
Authors: A. Flis, A. P. Fernandez, T. Zielinski, V. Mengin, R. Sulpice, K. Stratford, A. Hume, A. Pokhilko, M. M. Southern, D. D. Seaton, H. G. McWatters, M. Stitt, K. J. Halliday, A. J. Millar
Date Published: 16th Oct 2015
Publication Type: Not specified
PubMed ID: 26468131
Citation: Open Biol. 2015 Oct;5(10). pii: 150042. doi: 10.1098/rsob.150042.