This model is derived from Biomodels 299 - the Leloup et al Neurospora clock model. This variant contains an embedded light-forcing function (SBO:000475) that provides a periodic light input. In this model, after 72h of LD12:12, the amplitude of Vs ( the light dependent parameter ) increases to 4.1, leading to chaotic oscillations. For this to happen, the periodic light function needs to produce a square-wave pattern. Execution of this model will result in the behaviour depicted in Figure 2D ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Adams, Richard
Organisms: No organisms
Models: Neurospora Circadian Clock 3-variable model - P..., Neurospora Circadian Clock 3-variable model - P...
SOPs: No SOPs
Data files: A SED-ML archive file containing the model and ..., After 72 hrs, the light function increases to 4..., Instructions on how to use the SED-ML archive, ..., SEDX Archive reproducing a phase response param...
Snapshots: No snapshots
The models in this record were published in Flis et al. Royal Society Open Biology 2015. They will be submitted to Biomodels when we have a PubMed ID for the paper.
Original model: Arabidopsis clock model P2011.1.1 from Pokhilko et al. Mol Syst. Biol. 2012, http://dx.doi.org/10.1038/msb.2012.6
Published version is Biomodels ID 00412, http://www.ebi.ac.uk/compneur-srv/biomodels-main/BIOMD0000000412 Also public in Plasmo as PLM_64, with several versions, http://www.plasmo.ed.ac.uk/plasmo/models/model.shtml?accession=PLM_64 ...
Submitter: BioData SynthSys
Biological problem addressed: Gene Regulatory Network
Investigation: Millar, Andrew (ex-PlaSMo models)
Organisms: Arabidopsis thaliana
Models: Arabidopsis clock model P2011.2.1 - PLM_71, ver..., Arabidopsis clock model P2011.2.1 - PLM_71, ver...
SOPs: No SOPs
Data files: SBSI output from optimisation 26-30 July 2013, ..., Unpacked SBSI optimisation results, PLM_71_ 2
Snapshots: No snapshots
RNA timeseries data for Arabidopsis Col wild-type plants and clock mutants, as separate mean and SD files. The raw data is available on BioDare.ed.ac.uk, and is linked as 'Attribution' from elsewhere on FAIRDOMHub.
The starting models are included here in their original forms, the P2011 model as an SBML L3V1 model file, and the KF2014 model of Fogelmark et al. shared as SBML; both prepared by Uriel Urquiza.
Submitter: Andrew Millar
Biological problem addressed: Gene Regulatory Network
Investigation: Absolute units in Arabidopsis clock models up t...
Organisms: No organisms
Models: Arabidopsis clock model P2011.1.2, F2014 all parameters in SBML, F2014.1 - PLM_1030, version 1, SUBMITTED, F2014.1.2 with stepfunction and 1 hidden item
SOPs: No SOPs
Data files: Processed TiMet WP1.1a RNA data, SD, Processed TiMet WP1.1a RNA data, mean
Snapshots: No snapshots
Metabolite analysis in clock mutants: Col-0 parent and mutants gi-201, toc1-101 and prr7prr9; WS parent and lhy/cca1 double mutant. Plants grown in Golm and harvested at End of Day and End of Night, , assays 22 major metabolites. More detail on TiMet wiki if required. Heteroscedastic t-tests to highlight most significant changes, without multiple-testing correction.
Submitter: Andrew Millar
Assay type: Metabolite Concentration
Technology type: Chromatography
Investigation: Prediction and analysis of phenotypes in the Ar...
Organisms: Arabidopsis thaliana : Col-0 wild type (wild-type / wild-type), Arabidopsis thaliana : prr7-3 prr9-1 (T-DNA insertion PRR9;T-DNA insertion PRR7 / 28h circadian rhythm), Arabidopsis thaliana
SOPs: No SOPs
Data files: TiMet WP1.1a metabolite data, ED-EN in clock mu...
Snapshots: No snapshots
RNA levels for control amplicons and multiple clock genes in 2 WT (Col, Ws) and 5 clock mutants of Arabidopsis, in biological duplicates, from three conditions: Diurnal cycle (12L/12D), Extended night (DD), Extended light (LL), harvested every 2 hours. Numbers are in transcript copy per cell, obtained assuming 1 g FW contains 25000000 cells. Comments: Data from LD are concateneted with DD and LL for better visualization. Toc1-101 (col-0) gi-201 (col-0) prr7-3 prr9-1 (col-0) , lhy cca1 (ws) elf3-4 ...
Creator: Andrew Millar
Submitter: Andrew Millar
Originally submitted model file for PLaSMo accession ID PLM_71, version 1
Creators: BioData SynthSys, Andrew Millar, Andrew Millar
Submitter: BioData SynthSys
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: Not specified
Organism: Arabidopsis thaliana
Investigations: Millar, Andrew (ex-PlaSMo models)
Originally submitted model file for PLaSMo accession ID PLM_71, version 2
Creators: BioData SynthSys, Andrew Millar, Andrew Millar
Submitter: BioData SynthSys
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: Copasi
Organism: Arabidopsis thaliana
Investigations: Millar, Andrew (ex-PlaSMo models)
Exactly the same as model 243, but uploaded as a file rather than copied from PlaSMo.
Creator: Andrew Millar
Submitter: Andrew Millar
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
Organism: Arabidopsis thaliana
Investigations: Prediction and analysis of phenotypes in the Ar...
Matlab model (could not be represented in SBML) from publication with abstract: Clock-regulated pathways coordinate the response of many developmental processes to changes in photoperiod and temperature. We model two of the best-understood clock output pathways in Arabidopsis, which control key regulators of flowering and elongation growth. In flowering, the model predicted regulatory links from the clock to CYCLING DOF FACTOR 1 (CDF1) and FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) transcription. ...
Creators: Andrew Millar, Daniel Seaton
Submitter: Andrew Millar
Model type: Ordinary differential equations (ODE)
Model format: Matlab package
Environment: Matlab
Organism: Arabidopsis thaliana
Investigations: Prediction and analysis of phenotypes in the Ar...
Studies: Construction of Framework Model version 2 (FMv2)
Assays: Composition of FMv2
This version is P2011.1.2, model ID PLM_71 version 1. Dynamics identical to P2011.1.1 of the Pokhilko et al. 2012 publication.
http://www.plasmo.ed.ac.uk/plasmo/models/download.shtml?accession=PLM_71&version=1
Creator: Andrew Millar
Submitter: Andrew Millar
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
Organism: Arabidopsis thaliana
Investigations: Absolute units in Arabidopsis clock models up t..., Prediction and analysis of phenotypes in the Ar...
Studies: Construction of Framework Model version 2 (FMv2), Rescaling the P2011 model to match RNA data
Assays: Simulating clock gene expression with model P20..., TiMet RNA timeseries data and starting models
Abstract
Authors: Karl Fogelmark, Carl Troein
Date Published: 17th Jul 2014
Publication Type: Not specified
DOI: 10.1371/journal.pcbi.1003705
Citation: PLoS Comput Biol 10(7) : e1003705
Abstract
Authors: Hannah A Kinmonth-Schultz, Melissa J MacEwen, Daniel D Seaton, Andrew J Millar, Takato Imaizumi, Soo-Hyung Kim
Date Published: No date defined
Publication Type: Not specified
DOI: 10.1101/267104
Citation: Mechanistic model of temperature influence on flowering through whole-plant accumulation of FT
Abstract (Expand)
Authors: Daniel Seaton, Alexander Graf, Katja Baerenfaller, Mark Stitt, Andrew Millar, Wilhelm Gruissem
Date Published: No date defined
Publication Type: Not specified
DOI: 10.1101/182071
Citation: Photoperiodic control of the Arabidopsis proteome reveals a translational coincidence mechanism
Abstract (Expand)
Authors: Yin Hoon Chew, Daniel D. Seaton, Virginie Mengin, Anna Flis, Sam T. Mugford, Alison M. Smith, Mark Stitt, Andrew J Millar
Date Published: 6th Feb 2017
Publication Type: Tech report
DOI: 10.1101/105437
Citation: biorxiv;105437v1,[Preprint]
Abstract (Expand)
Authors: B. Wenden, D. L. Toner, S. K. Hodge, R. Grima, A. J. Millar
Date Published: 13th Apr 2012
Publication Type: Not specified
PubMed ID: 22496591
Citation: Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6757-62. doi: 10.1073/pnas.1118814109. Epub 2012 Apr 10.
Abstract (Expand)
Authors: D. D. Seaton, R. W. Smith, Y. H. Song, D. R. MacGregor, K. Stewart, G. Steel, J. Foreman, S. Penfield, T. Imaizumi, A. J. Millar, K. J. Halliday
Date Published: 21st Jan 2015
Publication Type: Not specified
PubMed ID: 25600997
Citation: Mol Syst Biol. 2015 Jan 19;11(1):776. doi: 10.15252/msb.20145766.