CometChip Enables Parallel Analysis of Multiple DNA Repair Activities

Jing Ge, Le P. Ngo, Simran Kaushal, Ian J. Tay, Elina Thadhani, Jennifer E. Kay, Patrizia Mazzucato, Danielle N. Chow, Jessica L. Fessler, David M. Weingeist, Robert W. Sobol, Leona D. Samson, Scott R. Floyd, Bevin P. Engelward,*


DNA damage can be cytotoxic and mutagenic, and it is directly linked to aging, cancer, and other diseases. To counteract the deleterious effects of DNA damage, cells have evolved highly conserved DNA repair pathways. Many commonly used DNA repair assays are relatively low throughput and are limited to analysis of one protein or one pathway. Here, we have explored the capacity of the CometChip platform for parallel analysis of multiple DNA repair activities. Taking advantage of the versatility of the traditional comet assay and leveraging micropatterning techniques, the CometChip platform offers increased throughput and sensitivity compared to the traditional comet assay. By exposing cells to DNA damaging agents that create substrates of Base Excision Repair, Nucleotide Excision Repair, and Non-Homologous End Joining, we show that the CometChip is an effective method for assessing repair deficiencies in all three pathways. With these applications of the CometChip platform, we expand the utility of the comet assay for precise, high-throughput, parallel analysis of multiple DNA repair activities.



Projects: MIT SRP

Study position:

help Creators and Submitter

Views: 174

Created: 8th Mar 2024 at 19:19

Last updated: 12th Mar 2024 at 19:34

help Tags

This item has not yet been tagged.

Powered by
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH