Models
What is a Model?Filters
Model for the Caulobacter crescentus Weimberg pathway, describing the conversion of Xyl to KG.
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
Model for the Caulobacter crescentus Weimberg pathway, describing the conversion of Xyl to KG in cell free extract. If the Mathematica notebook is downloaded and the data file is downloaded in the same directory, then the notebook can be evaluated, and the figure in the manuscript for the cell free extract with added Mn and NAD rec will be reproduced.
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Algebraic equations
Model format: Mathematica
Environment: Mathematica
Model for the Caulobacter crescentus Weimberg pathway, describing the conversion of Xyl to KG. Protein levels need to be adapted to CFE levels, see SED-ML scripts
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
Model for the Caulobacter crescentus α-ketoglutarate semialdehyde dehydrogenase, describing the initial rate kinetics for substrate dependence and product inhibition. If the Mathematica notebook is downloaded and the data file for the XAD kinetics is downloaded in the same directory, then the notebook can be evaluated. The model in the notebook will then be parameterised and the figures in the manuscript for KGSADH will be reproduced.
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Algebraic equations
Model format: Mathematica
Environment: Mathematica
Model for the Caulobacter crescentus Weimberg pathway, describing the conversion of Xyl to KG, with sequential addition of purified enzymes.
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
Model for the Caulobacter crescentus xylose dehydrogenase, describing the initial rate kinetics including substrate dependence and product inhibition. If the Mathematica notebook is downloaded and the data file for the XDH kinetics is downloaded in the same directory, then the notebook can be evaluated. The model in the notebook will then be parameterised and the figures in the manuscript for XDH will be reproduced.
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Algebraic equations
Model format: Mathematica
Environment: Mathematica
Model for the Caulobacter crescentus xylonolactonase, describing the initial rate kinetics and substrate dependence. If the Mathematica notebook is downloaded and the data file for the XLA kinetics is downloaded in the same directory, then the notebook can be evaluated. The model in the notebook will then be parameterised and the figures in the manuscript for XLA will be reproduced.
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Algebraic equations
Model format: Mathematica
Environment: Mathematica
Model for the Caulobacter crescentus xylonate dehydratase, describing the initial rate kinetics for substrate dependence. If the Mathematica notebook is downloaded and the data file for the XAD kinetics is downloaded in the same directory, then the notebook can be evaluated. The model in the notebook will then be parameterised and the figures in the manuscript for XAD will be reproduced.
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Algebraic equations
Model format: Mathematica
Environment: Mathematica
Model for the Caulobacter crescentus 2-keto-3-deoxy-D-xylonate dehydratase, describing the initial rate kinetics for substrate dependence and product inhibition. If the Mathematica notebook is downloaded and the data file for the XAD kinetics is downloaded in the same directory, then the notebook can be evaluated. The model in the notebook will then be parameterised and the figures in the manuscript for KDXD will be reproduced.
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Algebraic equations
Model format: Mathematica
Environment: Mathematica
BPG stability notebook
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: Mathematica
Environment: Mathematica
PGK model for S. solfataricus
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Algebraic equations
Model format: Mathematica
Environment: Mathematica
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
Creators: Dawie van Niekerk, Jacky Snoep
Submitter: Dawie van Niekerk
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: Not specified
Creators: Dawie van Niekerk, Jacky Snoep
Submitter: Dawie van Niekerk
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
PGK-GAPDH model Sulfolobus kouril8
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
PGK-GAPDH model yeast kouril7
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
PGK-GAPDH models yeast and Sulfolobus Fig. 4 in manuscript
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: Mathematica
Environment: Mathematica
PGK 70C SBML
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
PGK yeast Fig1a
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: Mathematica
Environment: Mathematica
PGK yeast with/without recycling
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
Creators: Dawie van Niekerk, Jacky Snoep
Submitter: Dawie van Niekerk
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
Creators: Dawie van Niekerk, Jacky Snoep
Submitter: Dawie van Niekerk
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: Not specified
Creators: Dawie van Niekerk, Jacky Snoep
Submitter: Dawie van Niekerk
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: Not specified
Creators: Dawie van Niekerk, Jacky Snoep
Submitter: Dawie van Niekerk
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
Creators: Dawie van Niekerk, Jacky Snoep
Submitter: Dawie van Niekerk
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
Creators: Dawie van Niekerk, Jacky Snoep
Submitter: Dawie van Niekerk
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
Creators: Dawie van Niekerk, Jacky Snoep
Submitter: Dawie van Niekerk
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
Creators: Dawie van Niekerk, Jacky Snoep
Submitter: Dawie van Niekerk
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
Creators: Dawie van Niekerk, Jacky Snoep
Submitter: Dawie van Niekerk
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Not specified
Model format: Not specified
Environment: Not specified