Investigations
What is an Investigation?The aim of the study is to assess the global function of RNase Y in RNA processing and degradation in Bacillus subtilis. To this end we constructed a strain allowing controlled depletion of RNase Y and used microarrays to analyze the transcriptome in response to the expression level of RNase Y.
The objective of this project is an integrated understanding the metabolic, proteomic and genetic network that controls the transition from growth to glucose starvation. This transition is a fundamental ecophysiological response that serves as a scientific model for environmental signal integration and is pivotal for industrial fermentations of Bacillus that occur predominantly under nutrient starvation.
Keywords: Glucose starvation, Transcriptomics, Proteomics, Metabolomics,Bacillus subtilis,
Submitter: Praveen kumar Sappa
Studies: B. subtilis Transcription Factor Competition, Batchfermentation exp-starv01_090204, Biphase Batch Fermentation(2009/02/04), Controlled sigmaB induction in shake flask, Transition to starvation in shake flask
Assays: 2D-gelbased analysis of intracellular proteins, Absolute quantification of proteins by the AQUA-technology, B. subtilis Transcription Factor Competition - theoretical interpretation, B. subtilis Transcription Factor Competition - theoretical interpretation, Fermentation-BM5_SysMo, Gene expression(Transcriptome), IPTG induction of sigmaB in BSA115, IPTG induction of sigmaB in BSA115, Relative quantification of proteins by metabolic labeling, Stressosome activation dynamics, metabolome-LCMS
Bacillus subtilis was subjected to various stress conditions like high temperature(57°C), low temperature(16°C), high osmalarity(1.2M NaCl). The above mentioned stress conditions are again split into two different types as 'continuous stress condition' and 'sudden shock'. All the conditions were then done in biological triplicates. Transcriptome for these samples was then analysed with Nimblegen Tiling array.
Submitter: Praveen kumar Sappa
Studies: Transcriptome analysis of glucose starvation in B. subtilis, Transcriptome of continuously stressed B. subtilis, Transcriptome of shocked B. subtilis cells
Assays: Tiling Array analysis of glucose strarved B. subtilis cells, Tiling Array analysis of shocked B. subtilis cells, Tiling array analysis of continuous growth stress conditions in SMM
The aim of this project is to develop a detailed kinetic model of the CcpA-dependent regulatory network, the key regulon of flux regulation in B. subtilis. Thereby involved are more than 300 genes e.g. catabolism, overflow metabolism, the TCA cycle and amino acid anabolism which are regulated via carbon catabolite regulation (CCR)
High salinity chemostat cultivation, multiomics sampling (proteome, transcriptome, metabolome, fluxome) and modelling of carbon core metabolism of Bacillus subtilis 168.
Submitter: Sandra Maass
Studies: B. subtilis_SysMo2_Chemostat_growthrate-salt, Fluxome analysis of Bacillus subtilis 168 under osmotic stress
Assays: 13C Metabolic Flux Analysis of Bacillus subtilis 168 in continuous high-..., Absolute quantification of proteins by the AQUA-technology, Absolute quantification of proteins using QconCAT technology, Relative quantification of proteins by metabolic labeling, Transcriptome data for chemostat cultivated samples, extracellular metabolites, intracellular metabolites