Contains the summary of model evolution for the Arabidopsis clock in absolute units. In these process two alternative architectures were proposed and fitted to Flis A et al 2015 Open Biology.
Export PNG
Views: 971 Downloads: 36
Created: 7th May 2020 at 16:53
This item has not yet been tagged.
None
Version History
Version 1 (earliest) Created 7th May 2020 at 16:53 by Uriel Urquiza Garcia
No revision comments
Related items
Projects: Millar group, TiMet, PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops, POP - the Parameter Optimisation Problem, Regulation of flowering time in natural conditions, PlaSMo model repository
Institutions: University of Edinburgh
https://orcid.org/0000-0003-1756-3654Projects: Millar group, PlaSMo model repository, PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops, Light and plant development, Light control of leaf development, Toggle switch, Reduce Complexity (RCO) reconstruction, Model Driven Prime Editing, PULSE 2.0, Plant optogenetics
Institutions: University of Edinburgh, Heinrich Heine University of Düsseldorf
https://orcid.org/0000-0002-7975-5013SynthSys is the University of Edinburgh's research organisation in interdisciplinary, Synthetic and Systems Biology, founded in 2012 as the successor to the Centre for Systems Biology at Edinburgh (CSBE).
Projects: Millar group, PHYTOCAL: Phytochrome Control of Resource Allocation and Growth in Arabidopsis and in Brassicaceae crops, TiMet, POP - the Parameter Optimisation Problem, Regulation of flowering time in natural conditions, PlaSMo model repository
Web page: http://www.synthsys.ed.ac.uk
Andrew Millar's research group, University of Edinburgh
Programme: SynthSys
Public web page: http://www.amillar.org
Organisms: Escherichia coli, Arabidopsis thaliana, Ostreococcus tauri
The dataset presents mathematical models of the gene regulatory network of the circadian clock, in the plant Arabidopsis thaliana. The work is published in Urquiza-Garcia and Millar, Testing the inferred transcription rates of a dynamic, gene network model in absolute units, In Silico Plants, 2021.
Starting from the P2011 model, this project corrects theoretical issues (EC steady state binding assumption) to form an intermediate model (first version U2017.1; published as U2019.1) model, rescales ...
Collection of models used in the introduction of absolute units into A. thaliana circadian clock models, with software resources and documentation. The models are inspired by P2011, published in Pokhilko et al 2012. The study contains Assays that link to the P2011 starting model and the models U2019.1 - .3 and U2020.1 - .3. Each model is shared as a human-readable file in the Antimony language and the associated, machine-readable SBML file, which was automatically generated using the SBML export ...
Submitter: Uriel Urquiza Garcia
Investigation: Absolute units in Arabidopsis clock models up t...
Assays: P2011.1.2, Reproducibility tool set, U2019/U2020 models
Snapshots: No snapshots
Collection of clock models that rescale transcript variables to account for absolute units. The relationship between models is summarised in the attached 'model evolution' document and in more detail in the linked publications (preprint version linked in the Snapshot; publication Urquiza and Millar, In Silico Plants 2021 did not have a DOI when Snapshot was created).
Each model is presented three times,
-
- without a light:dark cycle,
-
- with an ISSF (Adams et al. JBR 2012) that is set up for ...
Submitter: Uriel Urquiza Garcia
Biological problem addressed: Gene Regulatory Network
Investigation: Absolute units in Arabidopsis clock models up t...
Organisms: Arabidopsis thaliana : Col-0 wild type (wild-type / wild-type)
Models: U2019 equation listing, U2019.1, U2019.1_ISSF, U2019.1_ISSF_10xLD_LL, U2019.2, U2019.2_ISSF, U2019.2_ISSF_10xLD_LL, U2019.3, U2019.3_ISSF, U2019.3_ISSF_10xLD_LL, U2020 equation listing, U2020.1, U2020.1_ISSF, U2020.1_ISSF_10xLD_LL, U2020.2, U2020.2_ISSF, U2020.2_ISSF_10xLD_LL, U2020.3, U2020.3_ISSF, U2020.3_ISSF_10xLD_LL
SOPs: No SOPs
Data files: No Data files
Snapshots: No snapshots