Background: The current COVID-19 pandemic has led to a surge of research activity. While this research provides important insights, the multitude of studies results in an increasing segmentation of information. To ensure comparability across projects and institutions, standard datasets are needed. Here, we introduce the "German Corona Consensus Dataset" (GECCO), a uniform dataset that uses international terminologies and health IT standards to improve interoperability of COVID-19 data. Methods: Based on previous work (e.g., the ISARIC-WHO COVID-19 case report form) and in coordination with experts from university hospitals, professional associations and research initiatives, data elements relevant for COVID-19 research were collected, prioritized and consolidated into a compact core dataset. The dataset was mapped to international terminologies, and the Fast Healthcare Interoperability Resources (FHIR) standard was used to define interoperable, machine-readable data formats. Results: A core dataset consisting of 81 data elements with 281 response options was defined, including information about, for example, demography, anamnesis, symptoms, therapy, medications or laboratory values of COVID-19 patients. Data elements and response options were mapped to SNOMED CT, LOINC, UCUM, ICD-10-GM and ATC, and FHIR profiles for interoperable data exchange were defined. Conclusion: GECCO provides a compact, interoperable dataset that can help to make COVID-19 research data more comparable across studies and institutions. The dataset will be further refined in the future by adding domain-specific extension modules for more specialized use cases.
SEEK ID: https://fairdomhub.org/publications/568
DOI: 10.1101/2020.07.27.20162636
Projects: COVID-19 related studies and tools in Germany, nfdi4health - German National Research Data Infrastructure for Personal ...
Publication type: Journal
Citation: medrxiv;2020.07.27.20162636v1,[Preprint]
Date Published: 29th Jul 2020
Registered Mode: by DOI
Views: 2064
Created: 30th Jul 2020 at 16:09
Last updated: 8th Dec 2022 at 17:26
None