Publications

What is a Publication?
13 Publications visible to you, out of a total of 13

Abstract (Expand)

BACKGROUND: Macrophages play an important role in maintaining liver homeostasis and regeneration. However, it is not clear to what extent the different macrophage populations of the liver differ in terms of their activation state and which other liver cell populations may play a role in regulating the same. METHODS: Reverse transcription PCR, flow cytometry, transcriptome, proteome, secretome, single cell analysis, and immunohistochemical methods were used to study changes in gene expression as well as the activation state of macrophages in vitro and in vivo under homeostatic conditions and after partial hepatectomy. RESULTS: We show that F4/80+/CD11bhi/CD14hi macrophages of the liver are recruited in a C-C motif chemokine receptor (CCR2)-dependent manner and exhibit an activation state that differs substantially from that of the other liver macrophage populations, which can be distinguished on the basis of CD11b and CD14 expressions. Thereby, primary hepatocytes are capable of creating an environment in vitro that elicits the same specific activation state in bone marrow-derived macrophages as observed in F4/80+/CD11bhi/CD14hi liver macrophages in vivo. Subsequent analyses, including studies in mice with a myeloid cell-specific deletion of the TGF-beta type II receptor, suggest that the availability of activated TGF-beta and its downregulation by a hepatocyte-conditioned milieu are critical. Reduction of TGF-betaRII-mediated signal transduction in myeloid cells leads to upregulation of IL-6, IL-10, and SIGLEC1 expression, a hallmark of the activation state of F4/80+/CD11bhi/CD14hi macrophages, and enhances liver regeneration. CONCLUSIONS: The availability of activated TGF-beta determines the activation state of specific macrophage populations in the liver, and the observed rapid transient activation of TGF-beta may represent an important regulatory mechanism in the early phase of liver regeneration in this context.

Authors: S. D. Wolf, C. Ehlting, S. Muller-Dott, G. Poschmann, P. Petzsch, T. Lautwein, S. Wang, B. Helm, M. Schilling, J. Saez-Rodriguez, M. Vucur, K. Stuhler, K. Kohrer, F. Tacke, S. Dooley, U. Klingmuller, T. Luedde, J. G. Bode

Date Published: 1st Aug 2023

Publication Type: Journal

Abstract (Expand)

This paper presents a report on outcomes of the 10th Computational Modeling in Biology Network (COMBINE) meeting that was held in Heidelberg, Germany, in July of 2019. The annual event brings together researchers, biocurators and software engineers to present recent results and discuss future work in the area of standards for systems and synthetic biology. The COMBINE initiative coordinates the development of various community standards and formats for computational models in the life sciences. Over the past 10 years, COMBINE has brought together standard communities that have further developed and harmonized their standards for better interoperability of models and data. COMBINE 2019 was co-located with a stakeholder workshop of the European EU-STANDS4PM initiative that aims at harmonized data and model standardization for in silico models in the field of personalized medicine, as well as with the FAIRDOM PALs meeting to discuss findable, accessible, interoperable and reusable (FAIR) data sharing. This report briefly describes the work discussed in invited and contributed talks as well as during breakout sessions. It also highlights recent advancements in data, model, and annotation standardization efforts. Finally, this report concludes with some challenges and opportunities that this community will face during the next 10 years.

Authors: Dagmar Waltemath, Martin Golebiewski, Michael L Blinov, Padraig Gleeson, Henning Hermjakob, Michael Hucka, Esther Thea Inau, Sarah M Keating, Matthias König, Olga Krebs, Rahuman S Malik-Sheriff, David Nickerson, Ernst Oberortner, Herbert M Sauro, Falk Schreiber, Lucian Smith, Melanie I Stefan, Ulrike Wittig, Chris J Myers

Date Published: 29th Jun 2020

Publication Type: Journal

Abstract (Expand)

This special issue of the Journal of Integrative Bioinformatics presents papers related to the 10th COMBINE meeting together with the annual update of COMBINE standards in systems and synthetic biology.Not specified

Authors: Falk Schreiber, Björn Sommer, Tobias Czauderna, Martin Golebiewski, Thomas E. Gorochowski, Michael Hucka, Sarah M. Keating, Matthias König, Chris Myers, David Nickerson, Dagmar Waltemath

Date Published: 29th Jun 2020

Publication Type: Journal

Abstract (Expand)

Computational systems biology involves integrating heterogeneous datasets in order to generate models. These models can assist with understanding and prediction of biological phenomena. Generating datasets and integrating them into models involves a wide range of scientific expertise. As a result these datasets are often collected by one set of researchers, and exchanged with others researchers for constructing the models. For this process to run smoothly the data and models must be FAIR-findable, accessible, interoperable, and reusable. In order for data and models to be FAIR they must be structured in consistent and predictable ways, and described sufficiently for other researchers to understand them. Furthermore, these data and models must be shared with other researchers, with appropriately controlled sharing permissions, before and after publication. In this chapter we explore the different data and model standards that assist with structuring, describing, and sharing. We also highlight the popular standards and sharing databases within computational systems biology.

Authors: N. J. Stanford, M. Scharm, P. D. Dobson, M. Golebiewski, M. Hucka, V. B. Kothamachu, D. Nickerson, S. Owen, J. Pahle, U. Wittig, D. Waltemath, C. Goble, P. Mendes, J. Snoep

Date Published: 12th Oct 2019

Publication Type: Journal

Abstract (Expand)

This special issue of the Journal of Integrative Bioinformatics presents an overview of COMBINE standards and their latest specifications. The standards cover representation formats for computational modeling in synthetic and systems biology and include BioPAX, CellML, NeuroML, SBML, SBGN, SBOL and SED-ML. The articles in this issue contain updated specifications of SBGN Process Description Level 1 Version 2, SBML Level 3 Core Version 2 Release 2, SBOL Version 2.3.0, and SBOL Visual Version 2.1.

Authors: Falk Schreiber, Björn Sommer, Gary D. Bader, Padraig Gleeson, Martin Golebiewski, Michael Hucka, Sarah M. Keating, Matthias König, Chris Myers, David Nickerson, Dagmar Waltemath

Date Published: 13th Jul 2019

Publication Type: Journal

Abstract (Expand)

Life science researchers use computational models to articulate and test hypotheses about the behavior of biological systems. Semantic annotation is a critical component for enhancing the interoperability and reusability of such models as well as for the integration of the data needed for model parameterization and validation. Encoded as machine-readable links to knowledge resource terms, semantic annotations describe the computational or biological meaning of what models and data represent. These annotations help researchers find and repurpose models, accelerate model composition and enable knowledge integration across model repositories and experimental data stores. However, realizing the potential benefits of semantic annotation requires the development of model annotation standards that adhere to a community-based annotation protocol. Without such standards, tool developers must account for a variety of annotation formats and approaches, a situation that can become prohibitively cumbersome and which can defeat the purpose of linking model elements to controlled knowledge resource terms. Currently, no consensus protocol for semantic annotation exists among the larger biological modeling community. Here, we report on the landscape of current annotation practices among the COmputational Modeling in BIology NEtwork community and provide a set of recommendations for building a consensus approach to semantic annotation.

Authors: Maxwell Lewis Neal, Matthias König, David Nickerson, Göksel Mısırlı, Reza Kalbasi, Andreas Dräger, Koray Atalag, Vijayalakshmi Chelliah, Michael T Cooling, Daniel L Cook, Sharon Crook, Miguel de Alba, Samuel H Friedman, Alan Garny, John H Gennari, Padraig Gleeson, Martin Golebiewski, Michael Hucka, Nick Juty, Chris Myers, Brett G Olivier, Herbert M Sauro, Martin Scharm, Jacky L Snoep, Vasundra Touré, Anil Wipat, Olaf Wolkenhauer, Dagmar Waltemath

Date Published: 1st Mar 2019

Publication Type: Journal

Abstract (Expand)

Data standards support the reliable exchange of information, the interoperability of tools, and the reproducibility of scientific results. In systems biology standards are agreed ways of structuring, describing, and associating models and data, as well as their respective parts, graphical visualization, and information about applied experimental or computational methods. Such standards also assist with describing how constituent parts interact together, or are linked, and how they are embedded in their environmental and experimental context. Here the focus will be on standards for formatting models and their content, and on metadata checklists and ontologies that support modeling.

Author: Martin Golebiewski

Date Published: 2019

Publication Type: InBook

Abstract

Not specified

Authors: Falk Schreiber, Gary D. Bader, Padraig Gleeson, Martin Golebiewski, Michael Hucka, Sarah M. Keating, Nicolas Le Novère, Chris Myers, David Nickerson, Björn Sommer, Dagmar Waltemath

Date Published: 29th Mar 2018

Publication Type: Journal

Abstract (Expand)

Standards for data exchange are critical to the development of any field. They enable researchers and practitioners to transport information reliably, to apply a variety of tools to their problems, and to reproduce scientific results. Over the past two decades, a range of standards have been developed to facilitate the exchange and reuse of information in the domain of representation and modeling of biological systems. These standards are complementary, so the interactions between their developers increased over time. By the end of the last decade, the community of researchers decided that more interoperability is required between the standards, and that common development is needed to make better use of effort, time, and money devoted to this activity. The COmputational MOdeling in Biology NEtwork (COMBINE) was created to enable the sharing of resources, tools, and other infrastructure. This paper provides a brief history of this endeavor and the challenges that remain.

Authors: Chris J. Myers, Gary Bader, Padraig Gleeson, Martin Golebiewski, Michael Hucka, Nicolas Le Novere, David P. Nickerson, Falk Schreiber, Dagmar Waltemath

Date Published: 1st Dec 2017

Publication Type: InProceedings

Abstract

Not specified

Authors: Wolfgang Müller, Meik Bittkowski, Martin Golebiewski, Renate Kania, Maja Rey, Andreas Weidemann, Ulrike Wittig

Date Published: 1st Mar 2017

Publication Type: Journal

Abstract (Expand)

Standards are essential to the advancement of science and technology. In systems and synthetic biology, numerous standards and associated tools have been developed over the last 16 years. This special issue of the Journal of Integrative Bioinformatics aims to support the exchange, distribution and archiving of these standards, as well as to provide centralised and easily citable access to them.

Authors: F. Schreiber, G. D. Bader, P. Gleeson, M. Golebiewski, M. Hucka, N. Le Novere, C. Myers, D. Nickerson, B. Sommer, D. Walthemath

Date Published: 12th Feb 2017

Publication Type: Not specified

Abstract (Expand)

The FAIRDOMHub is a repository for publishing FAIR (Findable, Accessible, Interoperable and Reusable) Data, Operating procedures and Models (https://fairdomhub.org/) for the Systems Biology community. It is a web-accessible repository for storing and sharing systems biology research assets. It enables researchers to organize, share and publish data, models and protocols, interlink them in the context of the systems biology investigations that produced them, and to interrogate them via API interfaces. By using the FAIRDOMHub, researchers can achieve more effective exchange with geographically distributed collaborators during projects, ensure results are sustained and preserved and generate reproducible publications that adhere to the FAIR guiding principles of data stewardship.

Authors: K. Wolstencroft, O. Krebs, J. L. Snoep, N. J. Stanford, F. Bacall, M. Golebiewski, R. Kuzyakiv, Q. Nguyen, S. Owen, S. Soiland-Reyes, J. Straszewski, D. D. van Niekerk, A. R. Williams, L. Malmstrom, B. Rinn, W. Muller, C. Goble

Date Published: 4th Jan 2017

Publication Type: Journal

Abstract (Expand)

Reconstructing and understanding the Human Physiome virtually is a complex mathematical problem, and a highly demanding computational challenge. Mathematical models spanning from the molecular level through to whole populations of individuals must be integrated, then personalized. This requires interoperability with multiple disparate and geographically separated data sources, and myriad computational software tools. Extracting and producing knowledge from such sources, even when the databases and software are readily available, is a challenging task. Despite the difficulties, researchers must frequently perform these tasks so that available knowledge can be continually integrated into the common framework required to realize the Human Physiome. Software and infrastructures that support the communities that generate these, together with their underlying standards to format, describe and interlink the corresponding data and computer models, are pivotal to the Human Physiome being realized. They provide the foundations for integrating, exchanging and re-using data and models efficiently, and correctly, while also supporting the dissemination of growing knowledge in these forms. In this paper, we explore the standards, software tooling, repositories and infrastructures that support this work, and detail what makes them vital to realizing the Human Physiome.

Authors: D. Nickerson, K. Atalag, B. de Bono, J. Geiger, C. Goble, S. Hollmann, J. Lonien, W. Muller, B. Regierer, N. J. Stanford, M. Golebiewski, P. Hunter

Date Published: 7th Apr 2016

Publication Type: Not specified

Powered by
(v.1.16.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH