Publications

What is a Publication?
21 Publications visible to you, out of a total of 21

Abstract (Expand)

DEAD-box RNA helicases play important roles in remodeling RNA molecules and in facilitating a variety of RNA-protein interactions that are key to many essential cellular processes. In spite of the importance of RNA, our knowledge about RNA helicases is only limited. In this study we investigated the role of the four DEAD-box RNA helicases in Gram positive model-organism Bacillus subtilis. A strain deleted of all RNA helicases is able to grow at 37°C but not at lower temperatures. Especially the deletion of cshA, cshB or yfmL lead to cold-sensitive phenotypes. Moreover, these mutant strains exhibit unique defects in ribosome biogenesis suggesting distinct functions for the individual enzymes in this process. Based on protein accumulation, severity of the cold-sensitive phenotype and the interaction with components of the RNA degradosome, CshA is the major RNA helicase of B. subtilis. To unravel the functions of CshA in addition to ribosome biogenesis we conducted microarray analysis and identified the ysbAB and frlBONMD mRNAs as targets that are strongly affected by the deletion of the cshA gene. Our findings suggest that the different helicases make distinct contributions to the physiology of B. subtilis. Ribosome biogenesis and RNA degradation are two of their major tasks in B. subtilis.

Authors: Martin Lehnik-Habrink, Leonie Rempeters, Akos T Kovács, Christoph Wrede, Claudia Baierlein, Heike Krebber, ,

Date Published: 24th Nov 2012

Publication Type: Not specified

Abstract (Expand)

The Gram-positive soil bacterium Bacillus subtilis uses glucose and malate as the preferred carbon sources. In the presence of either glucose or malate, the expression of genes and operons for the utilization of secondary carbon sources is subject to carbon catabolite repression. While glucose is a preferred substrate in many organisms from bacteria to man, the factors that contribute to the preference for malate have so far remained elusive. In this work, we have studied the contribution of the different malate-metabolizing enzymes in B. subtilis, and we have elucidated their distinct functions. The malate dehydrogenase and the phosphoenolpyruvate carboxykinase are both essential for malate utilization; they introduce malate into gluconeogenesis. The NADPH-generating malic enzyme YtsJ is important to establish the cellular pools of NADPH for anabolic reactions. Finally, the NADH-generating malic enzymes MaeA, MalS, and MleA are involved in keeping the ATP levels high. Together, this unique array of distinct activities makes malate a preferred carbon source for B. subtilis.

Authors: Frederik M Meyer,

Date Published: 10th Nov 2012

Publication Type: Not specified

Abstract (Expand)

RNA processing and degradation are key processes in the control of transcript accumulation and thus in the control of gene expression. In Escherichia coli, the underlying mechanisms and components of RNA decay are well characterized. By contrast, Gram-positive bacteria do not possess several important players of E. coli RNA degradation, most notably the essential enzyme RNase E. Recent research on the model Gram-positive organism, Bacillus subtilis, has identified the essential RNases J1 and Y as crucial enzymes in RNA degradation. While RNase J1 is the first bacterial exoribonuclease with 5'-to-3' processivity, RNase Y is the founding member of a novel class of endoribonucleases. Both RNase J1 and RNase Y have a broad impact on the stability of B. subtilis mRNAs; a depletion of either enzyme affects more than 25% of all mRNAs. RNases J1 and Y as well as RNase J2, the polynucleotide phosphorylase PNPase, the RNA helicase CshA and the glycolytic enzymes enolase and phosphofructokinase have been proposed to form a complex, the RNA degradosome of B. subtilis. This review presents a model, based on recent published data, of RNA degradation in B. subtilis. Degradation is initiated by RNase Y-dependent endonucleolytic cleavage, followed by processive exoribonucleolysis of the generated fragments both in 3'-to-5' and in 5'-to-3' directions. The implications of these findings for pathogenic Gram-positive bacteria are also discussed.

Authors: Martin Lehnik-Habrink, , ,

Date Published: 8th May 2012

Publication Type: Not specified

Abstract (Expand)

Bacteria adapt to environmental stimuli by adjusting their transcriptomes in a complex manner, the full potential of which has yet to be established for any individual bacterial species. Here, we report the transcriptomes of Bacillus subtilis exposed to a wide range of environmental and nutritional conditions that the organism might encounter in nature. We comprehensively mapped transcription units (TUs) and grouped 2935 promoters into regulons controlled by various RNA polymerase sigma factors, accounting for ~66% of the observed variance in transcriptional activity. This global classification of promoters and detailed description of TUs revealed that a large proportion of the detected antisense RNAs arose from potentially spurious transcription initiation by alternative sigma factors and from imperfect control of transcription termination.

Authors: Pierre Nicolas, , Etienne Dervyn, Tatiana Rochat, Aurélie Leduc, Nathalie Pigeonneau, Elena Bidnenko, Elodie Marchadier, Mark Hoebeke, Stéphane Aymerich, Dörte Becher, Paola Bisicchia, Eric Botella, Olivier Delumeau, Geoff Doherty, Emma L Denham, Mark J Fogg, Vincent Fromion, Anne Goelzer, Annette Hansen, Elisabeth Härtig, , Georg Homuth, Hanne Jarmer, Matthieu Jules, Edda Klipp, Ludovic Le Chat, François Lecointe, , Wolfram Liebermeister, Anika March, , , David Noone, Susanne Pohl, Bernd Rinn, Frank Rügheimer, , Franck Samson, Marc Schaffer, Benno Schwikowski, , , Thomas Wiegert, Kevin M Devine, Anthony J Wilkinson, , , , Philippe Bessières, Philippe Noirot

Date Published: 3rd Mar 2012

Publication Type: Not specified

Abstract (Expand)

Common laboratory strains of Bacillus subtilis encode two glutamate dehydrogenases: the enzymatically active protein RocG and the cryptic enzyme GudB that is inactive due to a duplication of three amino acids in its active center. The inactivation of the rocG gene results in poor growth of the bacteria on complex media due to the accumulation of toxic intermediates. Therefore, rocG mutants readily acquire suppressor mutations that decryptify the gudB gene. This decryptification occurs by a precise deletion of one part of the 9-bp direct repeat that causes the amino acid duplication. This mutation occurs at the extremely high frequency of 10(-4). Mutations affecting the integrity of the direct repeat result in a strong reduction of the mutation frequency; however, the actual sequence of the repeat is not essential. The mutation frequency of gudB was not affected by the position of the gene on the chromosome. When the direct repeat was placed in the completely different context of an artificial promoter, the precise deletion of one part of the repeat was also observed, but the mutation frequency was reduced by 3 orders of magnitude. Thus, transcription of the gudB gene seems to be essential for the high frequency of the appearance of the gudB1 mutation. This idea is supported by the finding that the transcription-repair coupling factor Mfd is required for the decryptification of gudB. The Mfd-mediated coupling of transcription to mutagenesis might be a built-in precaution that facilitates the accumulation of mutations preferentially in transcribed genes.

Authors: Katrin Gunka, Stefan Tholen, Jan Gerwig, Christina Herzberg, , Fabian M Commichau

Date Published: 16th Dec 2011

Publication Type: Not specified

Abstract (Expand)

Bacillus subtilis possesses carbon-flux regulating histidine protein (Crh), a paralog of the histidine protein (HPr) of the phosphotransferase system (PTS). Like HPr, Crh becomes (de)phosphorylated in vitro at residue Ser46 by the metabolite-controlled HPr kinase/phosphorylase HPrK/P. Depending on its phosphorylation state, Crh exerts regulatory functions in connection with carbohydrate metabolism. So far, knowledge on phosphorylation of Crh in vivo has been limited and derived from indirect evidence. Here, we studied the dynamics of Crh phosphorylation directly by non-denaturing gel electrophoresis followed by Western analysis. The results confirm that HPrK/P is the single kinase catalyzing phosphorylation of Crh in vivo. Accordingly, phosphorylation of Crh is triggered by the carbon source as observed previously for HPr, but with some differences. Phosphorylation of both proteins occurred during exponential growth and disappeared upon exhaustion of the carbon source. During exponential growth, ~80% of the Crh molecules were phosphorylated when cells utilized a preferred carbon source. The reverse distribution, i.e. around 20% of Crh molecules phosphorylated, was obtained upon utilization of less favorable substrates. This clear-cut classification of the substrates into two groups has not previously been observed for HPr(Ser)~P formation. The likely reason for this difference is the additional PTS-dependent phosphorylation of HPr at His15, which limits accumulation of HPr(Ser)~P.

Authors: Jens J Landmann, Susanne Werner, , , Boris Görke

Date Published: 28th Nov 2011

Publication Type: Not specified

Abstract (Expand)

In the post-genomic era, most components of a cell are known and they can be quantified by large-scale functional genomics approaches. However, genome annotation is the bottleneck that hampers our understanding of living cells and organisms. Up-to-date functional annotation is of special importance for model organisms that provide a frame of reference for studies with other relevant organisms. We have generated a Wiki-type database for the Gram-positive model bacterium Bacillus subtilis, SubtiWiki (http://subtiwiki.uni-goettingen.de/). This Wiki is centered around the individual genes and gene products of B. subtilis and provides information on each aspect of gene function and expression as well as protein activity and its control. SubtiWiki is accompanied by two companion databases SubtiPathways and SubtInteract that provide graphical representations of B. subtilis metabolism and its regulation and of protein-protein interactions, respectively. The diagrams of both databases are easily navigatable using the popular Google maps API, and they are extensively linked with the SubtiWiki gene pages. Moreover, each gene/gene product was assigned to one or more functional categories and transcription factor regulons. Pages for the specific categories and regulons provide a rapid overview of functionally related genes/proteins. Today, SubtiWiki can be regarded as one of the most complete inventories of knowledge on a living organism in one single resource.

Authors: , Arne G Schmeisky, ,

Date Published: 16th Nov 2011

Publication Type: Not specified

Abstract (Expand)

Most organisms can choose their preferred carbon source from a mixture of nutrients. This process is called carbon catabolite repression. The Gram-positive bacterium Bacillus subtilis uses glucose as the preferred source of carbon and energy. Glucose-mediated catabolite repression is caused by binding of the CcpA transcription factor to the promoter regions of catabolic operons. CcpA binds DNA upon interaction with its cofactors HPr(Ser-P) and Crh(Ser-P). The formation of the cofactors is catalyzed by the metabolite-activated HPr kinase/phosphorylase. Recently, it has been shown that malate is a second preferred carbon source for B. subtilis that also causes catabolite repression. In this work, we addressed the mechanism by which malate causes catabolite repression. Genetic analyses revealed that malate-dependent catabolite repression requires CcpA and its cofactors. Moreover, we demonstrate that HPr(Ser-P) is present in malate-grown cells and that CcpA and HPr interact in vivo in the presence of glucose or malate but not in the absence of a repressing carbon source. The formation of the cofactor HPr(Ser-P) could be attributed to the concentrations of ATP and fructose 1,6-bisphosphate in cells growing with malate. Both metabolites are available at concentrations that are sufficient to stimulate HPr kinase activity. The adaptation of cells to environmental changes requires dynamic metabolic and regulatory adjustments. The repression strength of target promoters was similar to that observed in steady-state growth conditions, although it took somewhat longer to reach the second steady-state of expression when cells were shifted to malate.

Authors: Frederik M Meyer, Matthieu Jules, Felix M P Mehne, Dominique Le Coq, Jens J Landmann, Boris Görke, Stéphane Aymerich,

Date Published: 14th Oct 2011

Publication Type: Not specified

Abstract (Expand)

RNA processing and degradation is initiated by endonucleolytic cleavage of the target RNAs. In many bacteria, this activity is performed by RNase E which is not present in Bacillus subtilis and other Gram-positive bacteria. Recently, the essential endoribonuclease RNase Y has been discovered in B. subtilis. This RNase is involved in the degradation of bulk mRNA suggesting a major role in RNA metabolism. However, only a few targets of RNase Y have been identified so far. In order to assess the global impact of RNase Y, we compared the transcriptomes in response to the expression level of RNase Y. Our results demonstrate that processing by RNase Y results in accumulation of about 550 mRNAs. Some of these targets were substantially stabilized by RNase Y depletion, resulting in half-lives in the range of an hour. Moreover, about 350 mRNAs were less abundant when RNase Y was depleted among them the mRNAs of the operons required for biofilm formation. Interestingly, overexpression of RNase Y was sufficient to induce biofilm formation. The results presented in this work emphasize the importance of RNase Y as the global acting endoribonuclease for B. subtilis.

Authors: Martin Lehnik-Habrink, Marc Schaffer, , Christine Diethmaier, Christina Herzberg,

Date Published: 4th Aug 2011

Publication Type: Not specified

Abstract (Expand)

The control of mRNA stability is an important component of regulation in bacteria. Processing and degradation of mRNAs are initiated by an endonucleolytic attack, and the cleavage products are processively degraded by exoribonucleases. In many bacteria, these RNases, as well as RNA helicases and other proteins, are organized in a protein complex called the RNA degradosome. In Escherichia coli, the RNA degradosome is assembled around the essential endoribonuclease E. In Bacillus subtilis, the recently discovered essential endoribonuclease RNase Y is involved in the initiation of RNA degradation. Moreover, RNase Y interacts with other RNases, the RNA helicase CshA, and the glycolytic enzymes enolase and phosphofructokinase in a degradosome-like complex. In this work, we have studied the domain organization of RNase Y and the contribution of the domains to protein-protein interactions. We provide evidence for the physical interaction between RNase Y and the degradosome partners in vivo. We present experimental and bioinformatic data which indicate that the RNase Y contains significant regions of intrinsic disorder and discuss the possible functional implications of this finding. The localization of RNase Y in the membrane is essential both for the viability of B. subtilis and for all interactions that involve RNase Y. The results presented in this study provide novel evidence for the idea that RNase Y is the functional equivalent of RNase E, even though the two enzymes do not share any sequence similarity.

Authors: Martin Lehnik-Habrink, , Fabian M Rothe, Alexandra S Solovyova, Cecilia Rodrigues, Christina Herzberg, Fabian M Commichau, ,

Date Published: 29th Jul 2011

Publication Type: Not specified

Abstract (Expand)

Several computational methods exist to suggest rational genetic interventions that improve the productivity of industrial strains. Nonetheless, these methods are less effective to predict possible genetic responses of the strain after the intervention. This problem requires a better understanding of potential alternative metabolic and regulatory pathways able to counteract the targeted intervention.

Authors: , Katrin Gunka, Rafael Polanía, Stefan Tholen,

Date Published: 11th Jan 2011

Publication Type: Not specified

Abstract (Expand)

Systems biology relies increasingly on collaborations between several groups with different expertise. Therefore, the systems biology community is adopting standards that allow effective communication of concepts, as well as transmission and processing of pathway information. The Systems Biology Graphical Notation (SBGN) is a graphical language for biological pathways that has both a biological as well as a computational meaning. The program CellDesigner allows the codification of biological phenomena in an SBGN compliant form. CellPublisher is a web server that allows the conversion of CellDesigner files to web-based navigatable diagrams based on the user interface of Google maps. Thus, CellPublisher complements CellDesigner by facilitating the understanding of complex diagrams and by providing the possibility to share any CellDesigner diagram online with collaborators and get their feedback. Due to the intuitive interface of the online diagrams, CellPublisher serves as a basis for discovery of novel properties of the modelled networks.

Authors: , Christoph R Lammers, Raphael Michna,

Date Published: 14th Oct 2010

Publication Type: Not specified

Abstract (Expand)

The majority of all proteins of a living cell is active in complexes rather than in an isolated way. These protein-protein interactions are of high relevance for many biological functions. In addition to many well established protein complexes an increasing number of protein-protein interactions, which form rather transient complexes has recently been discovered. The formation of such complexes seems to be a common feature especially for metabolic pathways. In the Gram-positive model organism Bacillus subtilis, we identified a protein complex of three citric acid cycle enzymes. This complex consists of the citrate synthase, the isocitrate dehydrogenase, and the malate dehydrogenase. Moreover, fumarase and aconitase interact with malate dehydrogenase and with each other. These five enzymes catalyze sequential reaction of the TCA cycle. Thus, this interaction might be important for a direct transfer of intermediates of the TCA cycle and thus for elevated metabolic fluxes via substrate channeling. In addition, we discovered a link between the TCA cycle and gluconeogenesis through a flexible interaction of two proteins: the association between the malate dehydrogenase and phosphoenolpyruvate carboxykinase is directly controlled by the metabolic flux. The phosphoenolpyruvate carboxykinase links the TCA cycle with gluconeogenesis and is essential for B. subtilis growing on gluconeogenic carbon sources. Only under gluconeogenic growth conditions an interaction of these two proteins is detectable and disappears under glycolytic growth conditions.

Authors: Frederik M Meyer, Jan Gerwig, Elke Hammer, Christina Herzberg, Fabian M Commichau, ,

Date Published: 20th Aug 2010

Publication Type: Not specified

Abstract (Expand)

Phosphorylation is an important mechanism of protein modification. In the Gram-positive soil bacterium Bacillus subtilis, about 5% of all proteins are subject to phosphorylation, and a significant portion of these proteins is phosphorylated on serine or threonine residues. We were interested in the regulation of the basic metabolism in B. subtilis. Many enzymes of the central metabolic pathways are phosphorylated in this organism. In an attempt to identify the responsible protein kinase(s), we identified four candidate kinases, among them the previously studied kinase PrkC. We observed that PrkC is indeed able to phosphorylate several metabolic enzymes in vitro. Determination of the phosphorylation sites revealed a remarkable preference of PrkC for threonine residues. Moreover, PrkC often used several phosphorylation sites in one protein. This feature of PrkC-dependent protein phosphorylation resembles the multiple phosphorylations often observed in eukaryotic proteins. The HPr protein of the phosphotransferase system is one of the proteins phosphorylated by PrkC, and PrkC phosphorylates a site (Ser-12) that has recently been found to be phosphorylated in vivo. The agreement between in vivo and in vitro phosphorylation of HPr on Ser-12 suggests that our in vitro observations reflect the events that take place in the cell.

Authors: Nico Pietack, Dörte Becher, Sebastian R Schmidl, Milton H Saier, , Fabian M Commichau,

Date Published: 13th Apr 2010

Publication Type: Not specified

Abstract (Expand)

Bacillus subtilis is the model organism for a large group of Gram-positive bacteria, the Firmicutes. Several online databases have been established over time to manage its genetic and metabolic information, but they differ greatly in their rate of update and their focus on B. subtilis. Therefore, a European systems biology consortium called for an integrated solution that empowers its users to enrich online content. To meet this goal we created SubtiWiki and SubtiPathways, two complementary online tools for gene and pathway information on B. subtilis 168. SubtiWiki (http://subtiwiki.uni-goettingen.de/ ) is a scientific wiki for all genes of B. subtilis and their protein or RNA products. Each gene page contains a summary of the most important information; sections on the gene, its product and expression; sections concerning biological materials and laboratories; and a list of references. SubtiWiki has been seeded with key content and can be extended by any researcher after a simple registration, thus keeping it always up to date. As a complement, SubtiPathways (http://subtipathways.uni-goettingen.de/) is an online tool for navigation of the metabolism of B. subtilis and its regulation. Each SubtiPathways diagram presents a metabolic pathway with its participating enzymes, together with the regulatory mechanisms that act on their expression and activity, in an intuitive interface that is based on Google Maps. Together, SubtiWiki and SubtiPathways provide an integrated view of the processes that make up B. subtilis and its components, making it the most comprehensive web resource for B. subtilis researchers.

Authors: Christoph R Lammers, , Arne G Schmeisky, Sebastian F Roppel, Ulrike Mäder, ,

Date Published: 3rd Dec 2009

Publication Type: Not specified

Abstract (Expand)

Bacillus subtilis is the model organism for Gram-positive bacteria, with a large amount of publications on all aspects of its biology. To facilitate genome annotation and the collection of comprehensive information on B. subtilis, we created SubtiWiki as a community-oriented annotation tool for information retrieval and continuous maintenance. The wiki is focused on the needs and requirements of scientists doing experimental work. This has implications for the design of the interface and for the layout of the individual pages. The pages can be accessed primarily by the gene designations. All pages have a similar flexible structure and provide links to related gene pages in SubtiWiki or to information in the World Wide Web. Each page gives comprehensive information on the gene, the encoded protein or RNA as well as information related to the current investigation of the gene/protein. The wiki has been seeded with information from key publications and from the most relevant general and B. subtilis-specific databases. We think that SubtiWiki might serve as an example for other scientific wikis that are devoted to the genes and proteins of one organism.Database URL: The wiki can be accessed at http://subtiwiki.uni-goettingen.de/

Authors: , Sebastian F Roppel, Arne G Schmeisky, Christoph R Lammers,

Date Published: 26th May 2009

Publication Type: Not specified

Abstract (Expand)

Glycolysis is one of the most important metabolic pathways in heterotrophic organisms. Several genes encoding glycolytic enzymes are essential in many bacteria even under conditions when neither glycolytic nor gluconeogenic activities are required. In this study, a screening for in vivo interaction partners of glycolytic enzymes of the soil bacterium Bacillus subtilis was used to provide a rationale for essentiality of glycolytic enzymes. Glycolytic enzymes proved to be in close contact with several other proteins, among them a high proportion of essential proteins. Among these essential interaction partners, other glycolytic enzymes were most prominent. Two-hybrid studies confirmed interactions of phosphofructokinase with phosphoglyceromutase and enolase. Such a complex of glycolytic enzymes might allow direct substrate channeling of glycolytic intermediates. Moreover we found associations of glycolytic enzymes with several proteins known or suspected to be involved in RNA processing and degradation. One of these proteins, Rny (YmdA), which has so far not been functionally characterized, is required for the processing of the mRNA of the glycolytic gapA operon. Two-hybrid analyses confirmed the interactions between the glycolytic enzymes phosphofructokinase and enolase and the enzymes involved in RNA processing, RNase J1, Rny, and polynucleotide phosphorylase. Moreover RNase J1 interacts with its homologue RNase J2. We suggest that this complex of mRNA processing and glycolytic enzymes is the B. subtilis equivalent of the RNA degradosome. Our findings suggest that the functional interaction of glycolytic enzymes with essential proteins may be the reason why they are indispensable.

Authors: Fabian M Commichau, Fabian M Rothe, Christina Herzberg, Eva Wagner, Daniel Hellwig, Martin Lehnik-Habrink, Elke Hammer, ,

Date Published: 3rd Feb 2009

Publication Type: Not specified

Abstract (Expand)

In many bacteria glucose is the preferred carbon source and represses the utilization of secondary substrates. In Bacillus subtilis, this carbon catabolite repression (CCR) is achieved by the global transcription regulator CcpA, whose activity is triggered by the availability of its phosphorylated cofactors, HPr(Ser46-P) and Crh(Ser46-P). Phosphorylation of these proteins is catalyzed by the metabolite-controlled kinase HPrK/P. Recent studies have focused on glucose as a repressing substrate. Here, we show that many carbohydrates cause CCR. The substrates form a hierarchy in their ability to exert repression via the CcpA-mediated CCR pathway. Of the two cofactors, HPr is sufficient for complete CCR. In contrast, Crh cannot substitute for HPr on substrates that cause a strong repression. Determination of the phosphorylation state of HPr in vivo revealed a correlation between the strength of repression and the degree of phosphorylation of HPr at Ser46. Sugars transported by the phosphotransferase system (PTS) cause the strongest repression. However, the phosphorylation state of HPr at its His15 residue and PTS transport activity have no impact on the global CCR mechanism, which is a major difference compared to the mechanism operative in Escherichia coli. Our data suggest that the hierarchy in CCR exerted by the different substrates is exclusively determined by the activity of HPrK/P.

Authors: Kalpana D Singh, Matthias H Schmalisch, , Boris Görke

Date Published: 29th Aug 2008

Publication Type: Not specified

Abstract (Expand)

Most bacteria can selectively use substrates from a mixture of different carbon sources. The presence of preferred carbon sources prevents the expression, and often also the activity, of catabolic systems that enable the use of secondary substrates. This regulation, called carbon catabolite repression (CCR), can be achieved by different regulatory mechanisms, including transcription activation and repression and control of translation by an RNA-binding protein, in different bacteria. Moreover, CCR regulates the expression of virulence factors in many pathogenic bacteria. In this Review, we discuss the most recent findings on the different mechanisms that have evolved to allow bacteria to use carbon sources in a hierarchical manner.

Authors: Boris Görke,

Date Published: 17th Jul 2008

Publication Type: Not specified

Abstract (Expand)

Glutamate is a central metabolite in all organisms since it provides the link between carbon and nitrogen metabolism. In Bacillus subtilis, glutamate is synthesized exclusively by the glutamate synthase, and it can be degraded by the glutamate dehydrogenase. In B. subtilis, the major glutamate dehydrogenase RocG is expressed only in the presence of arginine, and the bacteria are unable to utilize glutamate as the only carbon source. In addition to rocG, a second cryptic gene (gudB) encodes an inactive glutamate dehydrogenase. Mutations in rocG result in the rapid accumulation of gudB1 suppressor mutations that code for an active enzyme. In this work, we analyzed the physiological significance of this constellation of genes and enzymes involved in glutamate metabolism. We found that the weak expression of rocG in the absence of the inducer arginine is limiting for glutamate utilization. Moreover, we addressed the potential ability of the active glutamate dehydrogenases of B. subtilis to synthesize glutamate. Both RocG and GudB1 were unable to catalyze the anabolic reaction, most probably because of their very high K(m) values for ammonium. In contrast, the Escherichia coli glutamate dehydrogenase is able to produce glutamate even in the background of a B. subtilis cell. B. subtilis responds to any mutation that interferes with glutamate metabolism with the rapid accumulation of extragenic or intragenic suppressor mutations, bringing the glutamate supply into balance. Similarly, with the presence of a cryptic gene, the system can flexibly respond to changes in the external glutamate supply by the selection of mutations.

Authors: Fabian M Commichau, Katrin Gunka, Jens J Landmann,

Date Published: 7th Mar 2008

Publication Type: Not specified

Abstract (Expand)

All regulatory processes require components that sense the environmental or metabolic conditions of the cell, and sophisticated sensory proteins have been studied in great detail. During the last few years, it turned out that enzymes can control gene expression in response to the availability of their substrates. Here, we review four different mechanisms by which these enzymes interfere with regulation in bacteria. First, some enzymes have acquired a DNA-binding domain and act as direct transcription repressors by binding DNA in the absence of their substrates. A second class is represented by aconitase, which can bind iron responsive elements in the absence of iron to control the expression of genes involved in iron homoeostasis. The third class of these enzymes is sugar permeases of the phosphotransferase system that control the activity of transcription regulators by phosphorylating them in the absence of the specific substrate. Finally, a fourth class of regulatory enzymes controls the activity of transcription factors by inhibitory protein-protein interactions. We suggest that the enzymes that are active in the control of gene expression should be designated as trigger enzymes. An analysis of the occurrence of trigger enzymes suggests that the duplication and subsequent functional specialization is a major pattern in their evolution.

Authors: Fabian M Commichau,

Date Published: 11th Dec 2007

Publication Type: Not specified

Powered by
(v.1.16.0-pre)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH