See wild type sample.
Export PNG
Views: 5109 Downloads: 222
Created: 17th Jan 2012 at 11:03
Last updated: 26th Aug 2014 at 12:20
This item has not yet been tagged.
None
Version History
Version 1 (earliest) Created 17th Jan 2012 at 11:03 by Jan-Willem Veening
No revision comments
Related items
Projects: Noisy-Strep
Institutions: University of Groningen
Expertise: Microbiology, Genetics, Molecular Biology, Single Cell analysis, Bacillus subtilis, Bacterial Cell Biology, Molecular microbiology, Medical microbiology, Streptococcus pneumoniae
Tools: Microbiology, Biochemistry, Genetics, Genetic modification, Transcriptomics, Fluorecence based reporter gene analyses/single cell analyses, Molecular biology techniques (RNA/DNA/Protein)
The Veening lab is interested in phenotypic bi-stability in Streptococcus pneumoniae and its importance in virulence of this human pathogen.
SysMO is a European transnational funding and research initiative on "Systems Biology of Microorganisms".
The goal pursued by SysMO was to record and describe the dynamic molecular processes going on in unicellular microorganisms in a comprehensive way and to present these processes in the form of computerized mathematical models.
Systems biology will raise biomedical and biotechnological research to a new quality level and contribute markedly to progress in understanding. Pooling European research ...
Projects: BaCell-SysMO, COSMIC, SUMO, KOSMOBAC, SysMO-LAB, PSYSMO, SCaRAB, MOSES, TRANSLUCENT, STREAM, SulfoSys, SysMO DB, SysMO Funders, SilicoTryp, Noisy-Strep
Web page: http://sysmo.net/
Bistable switches are the key elements of the regulatory networks governing cell development, differentiation and life-strategy decisions. Transcriptional noise is a main determinant that causes switching between different states in bistable systems. By using the human pathogen Streptococcus pneumoniae as a model bacterium, we will investigate how transcriptional fidelity and processivity influence (noisy) gene expression and participate in bistability. To study this question, we will use both ...
Programme: SysMO
Public web page: http://www.sysmo.net/index.php?index=163
Organisms: Streptococcus pneumoniae
Handling and manipulation of S. pneumoniae using molecular, cell biological and genetic tools.
Submitter: Jan-Willem Veening
Studies: Automated time-lapse microscopy, Chromosome segregation in S. pneumoniae, Investigation of bacterial transcription fidelity and processivity, The role of transcription factor GreA in transcription fidelity and proc...
Assays: Kinetics of misincorporation and proofreading by bacterial RNA polymerase, Live Cell Imaging of Bacillus subtilis and Streptococcus pneumoniae usin..., ParB-GFP ChIP on chip, RNA-Seq
Snapshots: No snapshots
For cells to accurately read out the genomic content, high fidelity during transcription is required. This is mainly established by the accuracy of the active centre of RNA polymerase (RNAP). Based on in vitro experiments with Escherichia coli RNAP it was also suggested that proofreading of transcription via RNA hydrolysis by RNAP may contribute to overall fidelity and processivity. RNAP’s intrinsic cleavage activity is stimulated by the highly conserved Gre factors suggesting that Gre factors ...
Submitter: Jan-Willem Veening
Investigation: Wetlab approach to transcription fidelity
Assays: RNA-Seq
Snapshots: No snapshots
S.pneumoniae D39 cells (wild type and delta greA) were grown in C+Y medium and cells were harvested for total RNA isolation at mid-exponential growth (OD600nm 0.3 for wt, 0.25 for delta greA). Total RNA was isolated as described before (Kloosterman et al 2006). The total RNA samples were examined by capillary electrophoresis. dephosphorylated with antarctic phosphatase followed by treatment with polynucleotide kinase (PNK). Afterwards, samples were poly(A)-tailed using poly(A) polymerase. Then a ...
Submitter: Jan-Willem Veening
Assay type: Transcriptomics
Technology type: Technology Type
Investigation: Wetlab approach to transcription fidelity
Organisms: No organisms
SOPs: No SOPs
Data files: RNA-seq delta greA, RNA-seq wild type
Snapshots: No snapshots
Abstract (Expand)
Authors: , , M. Herber, L. Attaiech, , , S. Klumpp, ,
Date Published: 6th Sep 2014
Publication Type: Not specified
PubMed ID: 25190458
Citation: