Publications

What is a Publication?
22 Publications visible to you, out of a total of 22

Abstract (Expand)

BACKGROUND: Systems biology approaches to study metabolic switching in Streptomyces coelicolor A3(2) depend on cultivation conditions ensuring high reproducibility and distinct phases of culture growth and secondary metabolite production. In addition, biomass concentrations must be sufficiently high to allow for extensive time-series sampling before occurrence of a given nutrient depletion for transition triggering. The present study describes for the first time the development of a dedicated optimized submerged batch fermentation strategy as the basis for highly time-resolved systems biology studies of metabolic switching in S. coelicolor A3(2). RESULTS: By a step-wise approach, cultivation conditions and two fully defined cultivation media were developed and evaluated using strain M145 of S. coelicolor A3(2), providing a high degree of cultivation reproducibility and enabling reliable studies of the effect of phosphate depletion and L-glutamate depletion on the metabolic transition to antibiotic production phase. Interestingly, both of the two carbon sources provided, D-glucose and L-glutamate, were found to be necessary in order to maintain high growth rates and prevent secondary metabolite production before nutrient depletion. Comparative analysis of batch cultivations with (i) both L-glutamate and D-glucose in excess, (ii) L-glutamate depletion and D-glucose in excess, (iii) L-glutamate as the sole source of carbon and (iv) D-glucose as the sole source of carbon, reveal a complex interplay of the two carbon sources in the bacterium's central carbon metabolism. CONCLUSIONS: The present study presents for the first time a dedicated cultivation strategy fulfilling the requirements for systems biology studies of metabolic switching in S. coelicolor A3(2). Key results from labelling and cultivation experiments on either or both of the two carbon sources provided indicate that in the presence of D-glucose, L-glutamate was the preferred carbon source, while D-glucose alone appeared incapable of maintaining culture growth, likely due to a metabolic bottleneck at the oxidation of pyruvate to acetyl-CoA.

Authors: A. Wentzel, P. Bruheim, A. Overby, O. M. Jakobsen, H. Sletta, W. A. Omara, D. A. Hodgson, T. E. Ellingsen

Date Published: 9th Jun 2012

Publication Type: Not specified

Abstract (Expand)

Determining transcriptional regulator activities is a major focus of systems biology, providing key insight into regulatory mechanisms and co-regulators. For organisms such as Escherichia coli, transcriptional regulator binding site data can be integrated with expression data to infer transcriptional regulator activities. However, for most organisms there is only sparse data on their transcriptional regulators, while their associated binding motifs are largely unknown. Here, we address the challenge of inferring activities of unknown regulators by generating de novo (binding) motifs and integrating with expression data. We identify a number of key regulators active in the metabolic switch, including PhoP with its associated directed repeat PHO box, candidate motifs for two SARPs, a CRP family regulator, an iron response regulator and that for LexA. Experimental validation for some of our predictions was obtained using gel-shift assays. Our analysis is applicable to any organism for which there is a reasonable amount of complementary expression data and for which motifs (either over represented or evolutionary conserved) can be identified in the genome.

Authors: M. Iqbal, Y. Mast, R. Amin, D. A. Hodgson, W. Wohlleben, N. J. Burroughs

Date Published: 13th Mar 2012

Publication Type: Not specified

Abstract (Expand)

A metabolite profiling study of the antibiotic producing bacterium Streptomyces coelicolor A3(2) has been performed. The aim of this study was to monitor intracellular metabolite pool changes occurring as strains of S. coelicolor react to nutrient depletion with metabolic re-modeling, so-called metabolic switching, and transition from growth to secondary metabolite production phase. Two different culture media were applied, providing depletion of the key nutrients phosphate and L-glutamate, respectively, as the triggers for metabolic switching. Targeted GC-MS and LC-MS methods were employed to quantify important primary metabolite groups like amino acids, organic acids, sugar phosphates and other phosphorylated metabolites, and nucleotides in time-course samples withdrawn from fully-controlled batch fermentations. A general decline, starting already in the early growth phase, was observed for nucleotide pools and phosphorylated metabolite pools for both the phosphate and glutamate limited cultures. The change in amino acid and organic acid pools were more scattered, especially in the phosphate limited situation while a general decrease in amino acid and non-amino organic acid pools was observed in the L-glutamate limited situation. A phoP deletion mutant showed basically the same metabolite pool changes as the wild-type strain M145 when cultivated on phosphate limited medium. This implies that the inactivation of the phoP gene has only little effect on the detected metabolite levels in the cell. The energy charge was found to be relatively constant during growth, transition and secondary metabolite production phase. The results of this study and the employed targeted metabolite profiling methodology are directly relevant for the evaluation of precursor metabolite and energy supply for both natural and heterologous production of secondary metabolites in S. coelicolor.

Authors: A. Wentzel, H. Sletta, T. E. Ellingsen, P. Bruheim

Date Published: 2012

Publication Type: Not specified

Abstract (Expand)

Bacteria in the genus Streptomyces are soil-dwelling oligotrophs and important producers of secondary metabolites. Previously, we showed that global messenger RNA expression was subject to a series of metabolic and regulatory switches during the lifetime of a fermentor batch culture of Streptomyces coelicolor M145. Here we analyze the proteome from eight time points from the same fermentor culture and, because phosphate availability is an important regulator of secondary metabolite production, compare this to the proteome of a similar time course from an S. coelicolor mutant, INB201 (DeltaphoP), defective in the control of phosphate utilization. The proteomes provide a detailed view of enzymes involved in central carbon and nitrogen metabolism. Trends in protein expression over the time courses were deduced from a protein abundance index, which also revealed the importance of stress pathway proteins in both cultures. As expected, the DeltaphoP mutant was deficient in expression of PhoP-dependent genes, and several putatively compensatory metabolic and regulatory pathways for phosphate scavenging were detected. Notably there is a succession of switches that coordinately induce the production of enzymes for five different secondary metabolite biosynthesis pathways over the course of the batch cultures.

Authors: L. Thomas, D. A. Hodgson, A. Wentzel, K. Nieselt, T. E. Ellingsen, J. Moore, E. R. Morrissey, R. Legaie, W. Wohlleben, A. Rodriguez-Garcia, J. F. Martin, N. J. Burroughs, E. M. Wellington, M. C. Smith

Date Published: 8th Dec 2011

Publication Type: Not specified

Abstract (Expand)

GlnK is an important nitrogen sensor protein in Streptomyces coelicolor. Deletion of glnK results in a medium-dependent failure of aerial mycelium and spore formation and loss of antibiotic production. Thus, GlnK is not only a regulator of nitrogen metabolism but also of morphological differentiation and secondary metabolite production. Through a comparative transcriptomic approach between the S. coelicolor wild-type and a S. coelicolor glnK mutant strain, 142 genes were identified that are differentially regulated in both strains. Among these are genes of the ram and rag operon, which are involved in S. coelicolor morphogenesis, as well as genes involved in gas vesicle biosynthesis and ectoine biosynthesis. Surprisingly, no relevant nitrogen genes were found to be differentially regulated, revealing that GlnK is not an important nitrogen sensor under the tested conditions.

Authors: E. Waldvogel, A. Herbig, F. Battke, R. Amin, M. Nentwich, K. Nieselt, T. E. Ellingsen, A. Wentzel, D. A. Hodgson, W. Wohlleben, Y. Mast

Date Published: 29th Oct 2011

Publication Type: Not specified

Abstract (Expand)

Streptomyces coelicolor, the model species of the genus Streptomyces, presents a complex life cycle of successive morphological and biochemical changes involving the formation of substrate and aerial mycelium, sporulation and the production of antibiotics. The switch from primary to secondary metabolism can be triggered by nutrient starvation and is of particular interest as some of the secondary metabolites produced by related Streptomycetes are commercially relevant. To understand these events on a molecular basis, a reliable technical platform encompassing reproducible fermentation as well as generation of coherent transcriptomic data is required. Here, we investigate the technical basis of a previous study as reported by Nieselt et al. (BMC Genomics 11:10, 2010) in more detail, based on the same samples and focusing on the validation of the custom-designed microarray as well as on the reproducibility of the data generated from biological replicates. We show that the protocols developed result in highly coherent transcriptomic measurements. Furthermore, we use the data to predict chromosomal gene clusters, extending previously known clusters as well as predicting interesting new clusters with consistent functional annotations.

Authors: F. Battke, A. Herbig, A. Wentzel, O. M. Jakobsen, M. Bonin, D. A. Hodgson, W. Wohlleben, T. E. Ellingsen, K. Nieselt

Date Published: 25th Mar 2011

Publication Type: Not specified

Abstract (Expand)

Background The transition from exponential to stationary phase in Streptomyces coelicolor is accompanied by a major metabolic switch and results in a strong activation of secondary metabolism. Here we have explored the underlying reorganization of the metabolome by combining computational predictions based on constraint-based modeling and detailed transcriptomics time course observations. Results We reconstructed the stoichiometric matrix of S. coelicolor, including the major antibiotic biosynthesis pathways, and performed flux balance analysis to predict flux changes that occur when the cell switches from biomass to antibiotic production. We defined the model input based on observed fermenter culture data and used a dynamically varying objective function to represent the metabolic switch. The predicted fluxes of many genes show highly significant correlation to the time series of the corresponding gene expression data. Individual mispredictions identify novel links between antibiotic production and primary metabolism. Conclusion Our results show the usefulness of constraint-based modeling for providing a detailed interpretation of time course gene expression data. Other Sections▼

Authors: , , The STREAM Consortium (stream), , , ,

Date Published: 2010

Publication Type: Not specified

Abstract (Expand)

BACKGROUND: During the lifetime of a fermenter culture, the soil bacterium S. coelicolor undergoes a major metabolic switch from exponential growth to antibiotic production. We have studied gene expression patterns during this switch, using a specifically designed Affymetrix genechip and a high-resolution time-series of fermenter-grown samples. RESULTS: Surprisingly, we find that the metabolic switch actually consists of multiple finely orchestrated switching events. Strongly coherent clusters of genes show drastic changes in gene expression already many hours before the classically defined transition phase where the switch from primary to secondary metabolism was expected. The main switch in gene expression takes only 2 hours, and changes in antibiotic biosynthesis genes are delayed relative to the metabolic rearrangements. Furthermore, global variation in morphogenesis genes indicates an involvement of cell differentiation pathways in the decision phase leading up to the commitment to antibiotic biosynthesis. CONCLUSIONS: Our study provides the first detailed insights into the complex sequence of early regulatory events during and preceding the major metabolic switch in S. coelicolor, which will form the starting point for future attempts at engineering antibiotic production in a biotechnological setting.

Authors: , Florian Battke, Alexander Herbig, , , , , , , , , Edward R Morrissey, Miguel A Juarez-Hermosillo, , Merle Nentwich, , Mudassar Iqbal, , , , , , , , Michael Bonin, , , , , , , , , ,

Date Published: 28th May 2009

Publication Type: Not specified

Abstract (Expand)

Antibiotic production is regulated by numerous signals, including the so-called bacterial hormones found in antibiotic producing organisms such as Streptomyces. These signals, the gamma-butyrolactones, are produced in very small quantities, which has hindered their structural elucidation and made it difficult to assess whether they are being produced. In this chapter, we describe a rapid small-scale extraction method from either solid or liquid cultures in scales of one plate or 50 ml of medium. Also described is a bioassay to detect the gamma-butyrolactones by determining either the production of pigmented antibiotic of Streptomyces coelicolor or kanamycin resistant growth on addition of the gamma-butyrolactones. We also describe some insights into the identification of the gamma-butyrolactone receptor and its targets and also the gel retardation conditions with three differently labeled probes.

Authors: Nai-Hua Hsiao, Marco Gottelt,

Date Published: 21st Apr 2009

Publication Type: Not specified

Abstract (Expand)

Mycobacterium tuberculosis can utilize various nutrients including nitrate as a source of nitrogen. Assimilation of nitrate requires the reduction of nitrate via nitrite to ammonium, which is then incorporated into metabolic pathways. This study was undertaken to define the molecular mechanism of nitrate assimilation in M. tuberculosis. Homologues to a narGHJI-encoded nitrate reductase and a nirBD-encoded nitrite reductase have been found on the chromosome of M. tuberculosis. Previous studies have implied a role for NarGHJI in nitrate respiration rather than nitrate assimilation. Here, we show that a narG mutant of M. tuberculosis failed to grow on nitrate. A nirB mutant of M. tuberculosis failed to grow on both nitrate and nitrite. Mutant strains of Mycobacterium smegmatis mc(2)155 that are unable to grow on nitrate were isolated. The mutants were rescued by screening a cosmid library from M. tuberculosis, and a gene with homology to the response regulator gene glnR of Streptomyces coelicolor was identified. A DeltaglnR mutant of M. tuberculosis was generated, which also failed to grow on nitrate, but regained its ability to utilize nitrate when nirBD was expressed from a plasmid, suggesting a role of GlnR in regulating nirBD expression. A specific binding site for GlnR within the nirB promoter was identified and confirmed by electrophoretic mobility shift assay using purified recombinant GlnR. Semiquantitative reverse transcription PCR, as well as microarray analysis, demonstrated upregulation of nirBD expression in response to GlnR under nitrogen-limiting conditions. In summary, we conclude that NarGHJI and NirBD of M. tuberculosis mediate the assimilatory reduction of nitrate and nitrite, respectively, and that GlnR acts as a transcriptional activator of nirBD.

Authors: Sven Malm, Yvonne Tiffert, Julia Micklinghoff, Sonja Schultze, Insa Joost, Isabel Weber, Sarah Horst, Birgit Ackermann, , , Stefan Ehlers, Robert Geffers, , Franz-Christoph Bange

Date Published: 1st Apr 2009

Publication Type: Not specified

Abstract (Expand)

Bacterial growth requires equilibrated concentration of C, N and P sources. This work shows a phosphate control over the nitrogen metabolism in the model actinomycete Streptomyces coelicolor. Phosphate control of metabolism in Streptomyces is exerted by the two component system PhoR-PhoP. The response regulator PhoP binds to well-known PHO boxes composed of direct repeat units (DRus). PhoP binds to the glnR promoter, encoding the major nitrogen regulator as shown by EMSA studies, but not to the glnRII promoter under identical experimental conditions. PhoP also binds to the promoters of glnA and glnII encoding two glutamine synthetases, and to the promoter of the amtB-glnK-glnD operon, encoding an ammonium transporter and two putative nitrogen sensing/regulatory proteins. Footprinting analyses revealed that the PhoP-binding sequence overlaps the GlnR boxes in both glnA and glnII. 'Information theory' quantitative analyses of base conservation allowed us to establish the structure of the PhoP-binding regions in the glnR, glnA, glnII and amtB genes. Expression studies using luxAB as reporter showed that PhoP represses the above mentioned nitrogen metabolism genes. A mutant deleted in PhoP showed increased expression of the nitrogen metabolism genes. The possible conservation of phosphate control over nitrogen metabolism in other microorganisms is discussed.

Authors: , Alberto Sola-Landa, Kristian Apel, Fernando Santos-Beneit,

Date Published: 24th Mar 2009

Publication Type: Not specified

Abstract (Expand)

The regulatory proteins AfsR and PhoP control expression of the biosynthesis of actinorhodin and undecylprodigiosin in Streptomyces coelicolor. Electrophoretic mobility shift assays showed that PhoP(DBD) does not bind directly to the actII-ORF4, redD and atrA promoters, but it binds to the afsS promoter, in a region overlapping with the AfsR operator. DNase I footprinting studies revealed a PhoP protected region of 26 nt (PHO box; two direct repeats of 11 nt) that overlaps with the AfsR binding sequence. Binding experiments indicated a competition between AfsR and PhoP; increasing concentrations of PhoP(DBD) resulted in the disappearance of the AfsR-DNA complex. Expression studies using the reporter luxAB gene coupled to afsS promoter showed that PhoP downregulates afsS expression probably by a competition with the AfsR activator. Interestingly, AfsR binds to other PhoP-regulated promoters including those of pstS (a component of the phosphate transport system) and phoRP (encoding the two component system itself). Analysis of the AfsR-protected sequences in each of these promoters allowed us to distinguish the AfsR binding sequence from the overlapping PHO box. The reciprocal regulation of the phoRP promoter by AfsR and of afsS by PhoP suggests a fine interplay of these regulators on the control of secondary metabolism.

Authors: Fernando Santos-Beneit, , Alberto Sola-Landa,

Date Published: 11th Feb 2009

Publication Type: Not specified

Abstract (Expand)

MOTIVATION: High-accuracy mass spectrometry is a popular technology for high-throughput measurements of cellular metabolites (metabolomics). One of the major challenges is the correct identification of the observed mass peaks, including the assignment of their empirical formula, based on the measured mass. RESULTS: We propose a novel probabilistic method for the assignment of empirical formulas to mass peaks in high-throughput metabolomics mass spectrometry measurements. The method incorporates information about possible biochemical transformations between the empirical formulas to assign higher probability to formulas that could be created from other metabolites in the sample. In a series of experiments, we show that the method performs well and provides greater insight than assignments based on mass alone. In addition, we extend the model to incorporate isotope information to achieve even more reliable formula identification. AVAILABILITY: A supplementary document, Matlab code, data and further information are available from http://www.dcs.gla.ac.uk/inference/metsamp.

Authors: Simon Rogers, Richard A Scheltema, Mark Girolami,

Date Published: 18th Dec 2008

Publication Type: Not specified

Abstract (Expand)

The prevalences of three sulfonamide resistance genes, sul1, sul2, and sul3 and sulfachloropyridazine (SCP) resistance were determined in bacteria isolated from manured agricultural clay soils and slurry samples in the United Kingdom over a 2-year period. Slurry from tylosin-fed pigs amended with SCP and oxytetracycline was used for manuring. Isolates positive for sul genes were further screened for the presence of class 1 and 2 integrons. Phenotypic resistance to SCP was significantly higher in isolates from pig slurry and postapplication soil than in those from preapplication soil. Of 531 isolates, 23% carried sul1, 18% sul2, and 9% sul3 only. Two percent of isolates contained all three sul genes. Class 1 and class 2 integrons were identified in 5% and 11.7%, respectively, of sul-positive isolates. In previous reports, sul1 was linked to class 1 integrons, but in this study only 8% of sul1-positive isolates carried the intI1 gene. Sulfonamide-resistant pathogens, including Shigella flexneri, Aerococcus spp., and Acinetobacter baumannii, were identified in slurry-amended soil and soil leachate, suggesting a potential environmental reservoir. Sulfonamide resistance in Psychrobacter, Enterococcus, and Bacillus spp. is reported for the first time, and this study also provides the first description of the genotypes sul1, sul2, and sul3 outside the Enterobacteriaceae and in the soil environment.

Authors: K G Byrne-Bailey, , P Kay, A B A Boxall, P M Hawkey,

Date Published: 8th Dec 2008

Publication Type: Not specified

Abstract (Expand)

Metabolic models have the potential to impact on genome annotation and on the interpretation of gene expression and other high throughput genome data. The genome of Streptomyces coelicolor genome has been sequenced and some 30% of the open reading frames (ORFs) lack any functional annotation. A recently constructed metabolic network model for S. coelicolor highlights biochemical functions which should exist to make the metabolic model complete and consistent. These include 205 reactions for which no ORF is associated. Here we combine protein functional predictions for the unannotated open reading frames in the genome with \'missing but expected\' functions inferred from the metabolic model. The approach allows function predictions to be evaluated in the context of the biochemical pathway reconstruction, and feed back iteratively into the metabolic model. We describe the approach and discuss a few illustrative examples.

Authors: Mansoor Saqi, Richard J B Dobson, Preben Kraben, ,

Date Published: 13th Nov 2008

Publication Type: Not specified

Abstract (Expand)

With the advent of a new generation of high-resolution mass spectrometers, the fields of proteomics and metabolomics have gained powerful new tools. In this paper, we demonstrate a novel computational method that improves the mass accuracy of the LTQ-Orbitrap mass spectrometer from an initial +/- 1-2 ppm, obtained by the standard software, to an absolute median of 0.21 ppm (SD 0.21 ppm). With the increased mass accuracy it becomes much easier to match mass chromatograms in replicates and different sample types, even if compounds are detected at very low intensities. The proposed method exploits the ubiquitous presence of background ions in LC-MS profiles for accurate alignment and internal mass calibration, making it applicable for all types of MS equipment. The accuracy of this approach will facilitate many downstream systems biology applications, including mass-based molecule identification, ab initio metabolic network reconstruction, and untargeted metabolomics in general.

Authors: Richard A Scheltema, Anas Kamleh, David Wildridge, Charles Ebikeme, David G Watson, Michael P Barrett, ,

Date Published: 22nd Oct 2008

Publication Type: Not specified

Abstract (Expand)

The transport of inorganic phosphate (P(i)) is essential for the growth of all organisms. The metabolism of soil-dwelling Streptomyces species, and their ability to produce antibiotics and other secondary metabolites, are strongly influenced by the availability of phosphate. The transcriptional regulation of the SCO4138 and SCO1845 genes of Streptomyces coelicolor was studied. These genes encode the two putative low-affinity P(i) transporters PitH1 and PitH2, respectively. Expression of these genes and that of the high-affinity transport system pstSCAB follows a sequential pattern in response to phosphate deprivation, as shown by coupling their promoters to a luciferase reporter gene. Expression of pitH2, but not that of pap-pitH1 (a bicistronic transcript), is dependent upon the response regulator PhoP. PhoP binds to specific sequences consisting of direct repeats of 11 nt in the promoter of pitH2, but does not bind to the pap-pitH1 promoter, which lacks these direct repeats for PhoP recognition. The transcription start point of the pitH2 promoter was identified by primer extension analyses, and the structure of the regulatory sequences in the PhoP-protected DNA region was established. It consists of four central direct repeats flanked by two other less conserved repeats. A model for PhoP regulation of this promoter is proposed based on the four promoter DNA-PhoP complexes detected by electrophoretic mobility shift assays and footprinting studies.

Authors: Fernando Santos-Beneit, , Etelvina Franco-Domínguez,

Date Published: 1st Aug 2008

Publication Type: Not specified

Abstract (Expand)

Many microorganisms, including bacteria of the class Streptomycetes, produce various secondary metabolites including antibiotics to gain a competitive advantage in their natural habitat. The production of these compounds is highly coordinated in a population to expedite accumulation to an effective concentration. Furthermore, as antibiotics are often toxic even to their producers, a coordinated production allows microbes to first arm themselves with a defense mechanism to resist their own antibiotics before production commences. One possible mechanism of coordination among individuals is through the production of signaling molecules. The gamma-butyrolactone system in Streptomyces coelicolor is a model of such a signaling system for secondary metabolite production. The accumulation of these signaling molecules triggers antibiotic production in the population. A pair of repressor-amplifier proteins encoded by scbA and scbR mediates the production and action of one particular gamma-butyrolactone, SCB1. Based on the proposed interactions of scbA and scbR, a mathematical model was constructed and used to explore the ability of this system to act as a robust genetic switch. Stability analysis shows that the butyrolactone system exhibits bistability and, in response to a threshold SCB1 concentration, can switch from an OFF state to an ON state corresponding to the activation of genes in the cryptic type I polyketide synthase gene cluster, which are responsible for production of the hypothetical polyketide. The switching time is inversely related to the inducer concentration above the threshold, such that short pulses of low inducer concentration cannot switch on the system, suggesting its possible role in noise filtering. In contrast, secondary metabolite production can be triggered rapidly in a population of cells producing the butyrolactone signal due to the presence of an amplification loop in the system. S. coelicolor was perturbed experimentally by varying concentrations of SCB1, and the model simulations match the experimental data well. Deciphering the complexity of this butyrolactone switch will provide valuable insights into how robust and efficient systems can be designed using "simple" two-protein networks.

Authors: Sarika Mehra, Salim Charaniya, , Wei-Shou Hu

Date Published: 2nd May 2008

Publication Type: Not specified

Abstract

Not specified

Authors: , Colette O'Neill, , Peter Hawkey

Date Published: 9th Apr 2008

Publication Type: Not specified

Abstract (Expand)

Streptomyces coelicolor GlnR is a global regulator that controls genes involved in nitrogen metabolism. By genomic screening 10 new GlnR targets were identified, including enzymes for ammonium assimilation (glnII, gdhA), nitrite reduction (nirB), urea cleavage (ureA) and a number of biochemically uncharacterized proteins (SCO0255, SCO0888, SCO2195, SCO2400, SCO2404, SCO7155). For the GlnR regulon, a GlnR binding site which comprises the sequence gTnAc-n(6)-GaAAc-n(6)-GtnAC-n(6)-GAAAc-n(6) has been found. Reverse transcription analysis of S. coelicolor and the S. coelicolor glnR mutant revealed that GlnR activates or represses the expression of its target genes. Furthermore, glnR expression itself was shown to be nitrogen-dependent. Physiological studies of S. coelicolor and the S. coelicolor glnR mutant with ammonium and nitrate as the sole nitrogen source revealed that GlnR is not only involved in ammonium assimilation but also in ammonium supply. blast analysis demonstrated that GlnR-homologous proteins are present in different actinomycetes containing the glnA gene with the conserved GlnR binding site. By DNA binding studies, it was furthermore demonstrated that S. coelicolor GlnR is able to interact with these glnA upstream regions. We therefore suggest that GlnR-mediated regulation is not restricted to Streptomyces but constitutes a regulon conserved in many actinomycetes.

Authors: Yvonne Tiffert, Petra Supra, Reinhild Wurm, , Rolf Wagner,

Date Published: 7th Jan 2008

Publication Type: Not specified

Abstract (Expand)

The computational reconstruction and analysis of cellular models of microbial metabolism is one of the great success stories of systems biology. The extent and quality of metabolic network reconstructions is, however, limited by the current state of biochemical knowledge. Can experimental high-throughput data be used to improve and expand network reconstructions to include unexplored areas of metabolism? Recent advances in experimental technology and analytical methods bring this aim an important step closer to realization. Data integration will play a particularly important part in exploiting the new experimental opportunities.

Authors: , Dennis Vitkup, Michael P Barrett

Date Published: 21st Nov 2007

Publication Type: Not specified

Abstract (Expand)

SUMMARY: We present a Cytoscape plugin for the inference and visualization of networks from high-resolution mass spectrometry metabolomic data. The software also provides access to basic topological analysis. This open source, multi-platform software has been successfully used to interpret metabolomic experiments and will enable others using filtered, high mass accuracy mass spectrometric data sets to build and analyse networks. AVAILABILITY: http://compbio.dcs.gla.ac.uk/fabien/abinitio/abinitio.html

Authors: Fabien Jourdan, , Michael P Barrett, David Gilbert

Date Published: 14th Nov 2007

Publication Type: Not specified

Powered by
(v.1.16.0-pre)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH