Assays

What is an Assay?
17 Assays visible to you, out of a total of 17

Leaf number at flowering data from literature for prr7 prr9 and Col wild-type plants under long photoperiods and short photoperiods

Seedling hypocotyl data from literature for prr7 prr9 and Col wild-type plants under various photoperiods

No description specified

Luciferase reporter gene assay for circadian period of seedlings in constant light, for Col0 (WT) and prr7prr9, with and without exogenous gibberellins (GA). Supplementary Figure 11f in Chew et al., _in Silico _Plants.

Raw and processed data, together with circadian period analysis and summary statistics, are available from BioDare.ed.ac.uk: choose https://biodare.ed.ac.uk/experiment ("Browse Public Resources" on the Login screen), then you can link to https://biodare.ed.ac.uk/robust/ShowExperiment.action?experimentId=3838, ...

Biomass (fresh mass, dry mass), leaf numbers, leaf area, gas exchange and 12 metabolites in Col0 (WT), prr7prr9, and pgm at days 29 and 35, presented in the preprint/publication, with most data also for Col and lhycca1 at days 21/22/23, not analysed further.

We suggest that the lower carbon assimilation rate measured in lhycca1 (see gas exchange data) might allow a calibirated simulation in the FMv2 model in future to incorporate the indirect effects of nightly carbon starvation in this genotype ...

Simulation data from FMv2 calibrated for experiment L&H2, an experiment run at 18.5C instead of the 20.5C of the replicate and related studies. The Excel file includes the mean and SD of the relevant experimental data, and the figure panels.

Biomass, leaf number and metabolites in Col0 (WT), prr7, prr7prr9, and lsf1. Metabolite data from plants after 28 days of growth were analysed most (27 days 'end of night', 28 days 'end of day' and 'end of night'). The data file also includes data from 21 days of growth ('end of day' and 'end of night'), which is useful for comparison to early-flowering plants not tested here, such as the lhycca1 double mutant, that flower before 28 days, altering their physiology.

No description specified

Plant material The same plant material used for transcriptome analysis in (Flis et al., 2016) was the basis of our proteome study. Briefly, Arabidopsis thaliana Col-0 plants were grown on GS 90 soil mixed in a ratio 2:1 (v/v) with vermiculite. Plants were grown for 1 week in a 16 h light (250 μmol m−2 s−1, 20 °C)/8 h dark (6 °C) regime followed by an 8 h light (160 μmol m−2 s−1, 20 °C)/16 h dark (16 °C) regime for one week. Plants were then replanted with five seedlings per pot, transferred for ...

These Python scripts define and simulate the translational coincidence model. This model takes measured transcript dynamics (Blasing et al, 2005) in 12L:12D, measured synthesis rates of protein in light compared to dark (Pal et al, 2013), and outputs predicted changes in protein abundance between short (6h) and long (18h) photoperiods. These are compared to the photoperiod proteomics dataset we generated.

Transcript profiling by microarray in 4, 6, 8, 12 and 18 h photoperiods, originally published in Flis et al, 2016, Photoperiod-dependent changes in the phase of core clock transcripts and global transcriptional outputs at dawn and dusk in Arabidopsis. doi: 10.1111/pce.12754.

Proteomics data for N15 incorporation into protein in Ostreococcus grown in 12L:12D light:dark cycles.

Quantitative proteomic analysis of Cyanothece ATCC51142 grown in 12L:12D light:dark cycles, using partial metabolic labeling and LC-MS analysis.

Data and Python scripts to run the analysis of literature data that estimates rates of protein synthesis in the light and dark, and overall rates of protein turnover, in Cyanothece and Ostrecoccus tauri.

Powered by
(v.1.16.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH