The general stress regulon of Bacillus subtilis is controlled by the activity state of sigmaB, a transcription factor that is switched on following exposure to either physical or nutritional stress. ClpP is the proteolytic component of an ATP-dependent protease that is essential for the proper regulation of multiple adaptive responses in B. subtilis. Among the proteins whose abundance increases in ClpP- B. subtilis are several known to depend on sigmaB for their expression. In the current work we examine the relationship of ClpP to the activity of sigmaB. The data reveal that the loss of ClpP in otherwise wild-type B. subtilis results in a small increase in sigmaB activity during growth and a marked enhancement of sigmaB activity following its induction by either physical or nutritional stress. It appears to be the persistence of sigmaB's activity rather than its induction that is principally affected by the loss of ClpP. sigmaB-dependent reporter gene activity rose in parallel in ClpP+ and ClpP- B. subtilis strains but failed to display its normal transience in the ClpP- strain. The putative ClpP targets are likely to be stress generated and novel. Enhanced sigmaB activity in ClpP- B. subtilis was triggered by physical stress but not by the induced synthesis of the physical stress pathway's positive regulator (RsbT). In addition, Western blot analyses failed to detect differences in the levels of the principal known sigmaB regulators in ClpP+ and ClpP- B. subtilis strains. The data suggest a model in which ClpP facilitates the turnover of stress-generated factors, which persist in ClpP's absence to stimulate ongoing sigmaB activity.
SEEK ID: https://fairdomhub.org/publications/47
PubMed ID: 17586624
Projects: BaCell-SysMO
Publication type: Not specified
Journal: J. Bacteriol.
Citation:
Date Published: 22nd Jun 2007
Registered Mode: Not specified
Views: 3928
Created: 20th Aug 2010 at 13:41
Last updated: 8th Dec 2022 at 17:25
This item has not yet been tagged.
None